Loading…

Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork

The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glau...

Full description

Saved in:
Bibliographic Details
Published in:ACS biomaterials science & engineering 2022-09, Vol.8 (9), p.3899-3911
Main Authors: Włodarczyk-Biegun, Małgorzata K., Villiou, Maria, Koch, Marcus, Muth, Christina, Wang, Peixi, Ott, Jenna, del Campo, Aranzazu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3
cites cdi_FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3
container_end_page 3911
container_issue 9
container_start_page 3899
container_title ACS biomaterials science & engineering
container_volume 8
creator Włodarczyk-Biegun, Małgorzata K.
Villiou, Maria
Koch, Marcus
Muth, Christina
Wang, Peixi
Ott, Jenna
del Campo, Aranzazu
description The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure–function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly­(caprolactone) constructs with a height of 125–500 μm and fiber diameters of 10–12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6–360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8–14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
doi_str_mv 10.1021/acsbiomaterials.2c00623
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9472227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704871152</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EolXpVwAfuWzxv8TOBQlVpUXqqkgtZ8txxl2XJC5jh8K3x6tdqsKlJ1ue934z40fIO85OOBP8g_O5j2lyBTC6MZ8Iz1gr5AtyKKSWq85o8_LJ_YAc53zHGOPSNEqp1-RANp1RSphDMq1hLPRsBF8wPWAscb6lKdBzdAMM9GvCtGR67V0IaRwyLYmu4xQ9LRuga1cw_qLXBRdfFoStcft-sUxupjfoevDL6JCuIW8eEn5_Q16FOjEc788j8u3z2c3pxery6vzL6afLlVMtLyvBB65kaIY-GKG1aLRQqhvapuvdYAwPAloVFNN17Qa8Vr5VdTcpRQ9a6CCPyMcd937pJxg8zAXdaO8xTg5_2-Si_bcyx429TT9tp7QQQlfA-z0A048FcrFTzB7G0c1QP8QKzZTRnDeiSvVO6jHljBAe23Bmt3nZ__Ky-7yq8-3TKR99f9OpArkTVIK9SwvOW_tz2D_z4Klg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704871152</pqid></control><display><type>article</type><title>Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Włodarczyk-Biegun, Małgorzata K. ; Villiou, Maria ; Koch, Marcus ; Muth, Christina ; Wang, Peixi ; Ott, Jenna ; del Campo, Aranzazu</creator><creatorcontrib>Włodarczyk-Biegun, Małgorzata K. ; Villiou, Maria ; Koch, Marcus ; Muth, Christina ; Wang, Peixi ; Ott, Jenna ; del Campo, Aranzazu</creatorcontrib><description>The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure–function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly­(caprolactone) constructs with a height of 125–500 μm and fiber diameters of 10–12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6–360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8–14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.2c00623</identifier><identifier>PMID: 35984428</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Humans ; Porosity ; Tissue Engineering - methods ; Tissue Engineering and Regenerative Medicine ; Tissue Scaffolds - chemistry ; Trabecular Meshwork - physiology</subject><ispartof>ACS biomaterials science &amp; engineering, 2022-09, Vol.8 (9), p.3899-3911</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3</citedby><cites>FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3</cites><orcidid>0000-0003-1419-6166 ; 0000-0002-3760-5252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35984428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Włodarczyk-Biegun, Małgorzata K.</creatorcontrib><creatorcontrib>Villiou, Maria</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Muth, Christina</creatorcontrib><creatorcontrib>Wang, Peixi</creatorcontrib><creatorcontrib>Ott, Jenna</creatorcontrib><creatorcontrib>del Campo, Aranzazu</creatorcontrib><title>Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure–function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly­(caprolactone) constructs with a height of 125–500 μm and fiber diameters of 10–12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6–360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8–14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.</description><subject>Humans</subject><subject>Porosity</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Engineering and Regenerative Medicine</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trabecular Meshwork - physiology</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EolXpVwAfuWzxv8TOBQlVpUXqqkgtZ8txxl2XJC5jh8K3x6tdqsKlJ1ue934z40fIO85OOBP8g_O5j2lyBTC6MZ8Iz1gr5AtyKKSWq85o8_LJ_YAc53zHGOPSNEqp1-RANp1RSphDMq1hLPRsBF8wPWAscb6lKdBzdAMM9GvCtGR67V0IaRwyLYmu4xQ9LRuga1cw_qLXBRdfFoStcft-sUxupjfoevDL6JCuIW8eEn5_Q16FOjEc788j8u3z2c3pxery6vzL6afLlVMtLyvBB65kaIY-GKG1aLRQqhvapuvdYAwPAloVFNN17Qa8Vr5VdTcpRQ9a6CCPyMcd937pJxg8zAXdaO8xTg5_2-Si_bcyx429TT9tp7QQQlfA-z0A048FcrFTzB7G0c1QP8QKzZTRnDeiSvVO6jHljBAe23Bmt3nZ__Ky-7yq8-3TKR99f9OpArkTVIK9SwvOW_tz2D_z4Klg</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Włodarczyk-Biegun, Małgorzata K.</creator><creator>Villiou, Maria</creator><creator>Koch, Marcus</creator><creator>Muth, Christina</creator><creator>Wang, Peixi</creator><creator>Ott, Jenna</creator><creator>del Campo, Aranzazu</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1419-6166</orcidid><orcidid>https://orcid.org/0000-0002-3760-5252</orcidid></search><sort><creationdate>20220912</creationdate><title>Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork</title><author>Włodarczyk-Biegun, Małgorzata K. ; Villiou, Maria ; Koch, Marcus ; Muth, Christina ; Wang, Peixi ; Ott, Jenna ; del Campo, Aranzazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Humans</topic><topic>Porosity</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Engineering and Regenerative Medicine</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trabecular Meshwork - physiology</topic><toplevel>online_resources</toplevel><creatorcontrib>Włodarczyk-Biegun, Małgorzata K.</creatorcontrib><creatorcontrib>Villiou, Maria</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Muth, Christina</creatorcontrib><creatorcontrib>Wang, Peixi</creatorcontrib><creatorcontrib>Ott, Jenna</creatorcontrib><creatorcontrib>del Campo, Aranzazu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Włodarczyk-Biegun, Małgorzata K.</au><au>Villiou, Maria</au><au>Koch, Marcus</au><au>Muth, Christina</au><au>Wang, Peixi</au><au>Ott, Jenna</au><au>del Campo, Aranzazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2022-09-12</date><risdate>2022</risdate><volume>8</volume><issue>9</issue><spage>3899</spage><epage>3911</epage><pages>3899-3911</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure–function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly­(caprolactone) constructs with a height of 125–500 μm and fiber diameters of 10–12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6–360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8–14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35984428</pmid><doi>10.1021/acsbiomaterials.2c00623</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1419-6166</orcidid><orcidid>https://orcid.org/0000-0002-3760-5252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2022-09, Vol.8 (9), p.3899-3911
issn 2373-9878
2373-9878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9472227
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Humans
Porosity
Tissue Engineering - methods
Tissue Engineering and Regenerative Medicine
Tissue Scaffolds - chemistry
Trabecular Meshwork - physiology
title Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melt%20Electrowriting%20of%20Graded%20Porous%20Scaffolds%20to%20Mimic%20the%20Matrix%20Structure%20of%20the%20Human%20Trabecular%20Meshwork&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=W%C5%82odarczyk-Biegun,%20Ma%C5%82gorzata%20K.&rft.date=2022-09-12&rft.volume=8&rft.issue=9&rft.spage=3899&rft.epage=3911&rft.pages=3899-3911&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.2c00623&rft_dat=%3Cproquest_pubme%3E2704871152%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a461t-21d143f5dbf82772572449d659bad881f2e64f4070625ec74c64385332be727f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704871152&rft_id=info:pmid/35984428&rfr_iscdi=true