Loading…
Detection of Lumbar Spondylolisthesis from X-ray Images Using Deep Learning Network
Spondylolisthesis refers to the displacement of a vertebral body relative to the vertrabra below it, which can cause radicular symptoms, back pain or leg pain. It usually occurs in the lower lumbar spine, especially in women over the age of 60. The prevalence of spondylolisthesis is expected to rise...
Saved in:
Published in: | Journal of clinical medicine 2022-09, Vol.11 (18), p.5450 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spondylolisthesis refers to the displacement of a vertebral body relative to the vertrabra below it, which can cause radicular symptoms, back pain or leg pain. It usually occurs in the lower lumbar spine, especially in women over the age of 60. The prevalence of spondylolisthesis is expected to rise as the global population ages, requiring prudent action to promptly identify it in clinical settings. The goal of this study was to develop a computer-aided diagnostic (CADx) algorithm, LumbarNet, and to evaluate the efficiency of this model in automatically detecting spondylolisthesis from lumbar X-ray images. Built upon U-Net, feature fusion module (FFM) and collaborating with (i) a P-grade, (ii) a piecewise slope detection (PSD) scheme, and (iii) a dynamic shift (DS), LumbarNet was able to analyze complex structural patterns on lumbar X-ray images, including true lateral, flexion, and extension lateral views. Our results showed that the model achieved a mean intersection over union (mIOU) value of 0.88 in vertebral region segmentation and an accuracy of 88.83% in vertebral slip detection. We conclude that LumbarNet outperformed U-Net, a commonly used method in medical image segmentation, and could serve as a reliable method to identify spondylolisthesis. |
---|---|
ISSN: | 2077-0383 2077-0383 |
DOI: | 10.3390/jcm11185450 |