Loading…
Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates
Poly(3-hexylthiophene) (P3HT) was systematically synthesized by chemical oxidative polymerization in chloroform with ferric chloride (FeCl3) as the oxidizing agent and various surfactants of the shape templates. The effects of 3HT: FeCl3 mole ratios, polymerization times, and surfactant types and co...
Saved in:
Published in: | Polymers 2022-09, Vol.14 (18), p.3860 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Poly(3-hexylthiophene) (P3HT) was systematically synthesized by chemical oxidative polymerization in chloroform with ferric chloride (FeCl3) as the oxidizing agent and various surfactants of the shape templates. The effects of 3HT: FeCl3 mole ratios, polymerization times, and surfactant types and concentrations on the electrical conductivity, particle shape and size were systematically investigated. Furthermore, dodecylbenzenesulfonic acid (DBSA), p-toluenesulfonic acid (PTSA), sodium dodecyl sulfate (SDS), and sodium dioctyl sulfosuccinate (AOT) were utilized as the surfactant templates. The P3HT synthesized with DBSA at 6 CMC, where CMC stands for the Critical Micelle Concentration of surfactant, provided a higher electrical conductivity than those with PTSA, SDS and AOT. The highest electrical conductivity of P3HT using DBSA was 16.21 ± 1.55 S cm−1 in which the P3HT particle shape was spherical with an average size of 1530 ± 227 nm. The thermal analysis indicated that the P3HT synthesized with the surfactants yielded higher stability and char yields than that of P3HT without. The P3HT_DBSA electrical conductivity was further enhanced by de-doping and doping with HClO4. At the 10:1 doping mole ratio, the electrical conductivity of dP3HT_DBSA increased by one order of magnitude relative to P3HT_DBSA prior to the de-doping. The highest electrical conductivity of dP3HT_DBSA obtained was 172 ± 5.21 S cm−1 which is the highest value relative to previously reported. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym14183860 |