Loading…

Enhanced Mechanical Properties and Anti–Inflammation of Poly(L–Lactic Acid) by Stereocomplexes of PLLA/PDLA and Surface–Modified Magnesium Hydroxide Nanoparticles

Poly(L–lactic acid) (PLLA), as a biodegradable polymer, has attracted attention for use as a biomaterial. In order to apply PLLA as a cardiovascular stent, stronger mechanical properties and anti–inflammatory effects against acidic by–products are required. In this study, PLLA/PDLA stereocomplex mic...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-09, Vol.14 (18), p.3790
Main Authors: Baek, Seung-Woon, Kim, Jun Hyuk, Song, Duck Hyun, Kim, Da-Seul, Park, Chun Gwon, Han, Dong Keun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(L–lactic acid) (PLLA), as a biodegradable polymer, has attracted attention for use as a biomaterial. In order to apply PLLA as a cardiovascular stent, stronger mechanical properties and anti–inflammatory effects against acidic by–products are required. In this study, PLLA/PDLA stereocomplex microparticles (SC) were developed and surface–modified magnesium hydroxide (MH) nanoparticles with oligolactide were combined with these PLLA composites. The SC improved the mechanical properties of the PLLA composites through the formation of stereocomplex structures. The surface–modified MH nanoparticles showed enhanced mechanical properties due to the stereocomplex structures formed by PLLA chains and inhibited inflammatory responses by pH neutralization as a result of MH. Additionally, the MH nanoparticles containing PLLA composites had antibacterial effects and increased the viability of human vascular endothelial cells. This technology is expected to have great potential in the development of PLLA composite materials for the production of various medical devices, such as cardiovascular stents.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14183790