Loading…

Scaling relations for auxin waves

We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology 2022-10, Vol.85 (4), p.41, Article 41
Main Authors: Bakker, Bente Hilde, Faver, Timothy E., Hupkes, Hermen Jan, Merks, Roeland M. H., van der Voort, Jelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3
cites cdi_FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3
container_end_page
container_issue 4
container_start_page 41
container_title Journal of mathematical biology
container_volume 85
creator Bakker, Bente Hilde
Faver, Timothy E.
Hupkes, Hermen Jan
Merks, Roeland M. H.
van der Voort, Jelle
description We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi–Pasta–Ulam–Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.
doi_str_mv 10.1007/s00285-022-01793-5
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9512763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718009272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EoqXwBxhQEAuL4WwndrwgoYovqRIDMFuu65RUaVzspMC_xzSlfAxMN9xz7917L0KHBM4IgDgPADTPMFCKgQjJcLaF-iRlFJOU8G3UBwYM85zQHtoLYQaRyiTZRT3GCWcZF310_GB0VdbTxNtKN6WrQ1I4n-j2rayTV720YR_tFLoK9mBdB-jp-upxeItH9zd3w8sRNqlIGyxBpIJanYtcW1vkKZ-AMLkkRNCMGjkGTbSR1FjJjTGyYFwawy1lVkjNx2yALjrdRTue24mxdeN1pRa-nGv_rpwu1e9OXT6rqVsqmREqOIsCp2sB715aGxo1L4OxVaVr69qgqCB5xOKjInryB5251tfR3ooCkFTQSNGOMt6F4G2xOYaA-kxAdQmomIBaJaCyOHT008Zm5OvlEWAdEGKrnlr_vfsf2Q9f7ZA-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718009272</pqid></control><display><type>article</type><title>Scaling relations for auxin waves</title><source>Springer Link</source><creator>Bakker, Bente Hilde ; Faver, Timothy E. ; Hupkes, Hermen Jan ; Merks, Roeland M. H. ; van der Voort, Jelle</creator><creatorcontrib>Bakker, Bente Hilde ; Faver, Timothy E. ; Hupkes, Hermen Jan ; Merks, Roeland M. H. ; van der Voort, Jelle</creatorcontrib><description>We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi–Pasta–Ulam–Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.</description><identifier>ISSN: 0303-6812</identifier><identifier>ISSN: 1432-1416</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-022-01793-5</identifier><identifier>PMID: 36163567</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Auxins ; Biological Transport ; Biology ; Hypotheses ; Indoleacetic Acids - metabolism ; Localization ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Membrane Transport Proteins ; Parameter identification ; Pin1 protein ; Plant Growth Regulators - metabolism ; Proteins ; Scaling ; Traveling waves</subject><ispartof>Journal of mathematical biology, 2022-10, Vol.85 (4), p.41, Article 41</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3</citedby><cites>FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3</cites><orcidid>0000-0001-6974-8090 ; 0000-0002-8914-7820 ; 0000-0003-1726-5323 ; 0000-0002-6152-687X ; 0000-0002-7710-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36163567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bakker, Bente Hilde</creatorcontrib><creatorcontrib>Faver, Timothy E.</creatorcontrib><creatorcontrib>Hupkes, Hermen Jan</creatorcontrib><creatorcontrib>Merks, Roeland M. H.</creatorcontrib><creatorcontrib>van der Voort, Jelle</creatorcontrib><title>Scaling relations for auxin waves</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi–Pasta–Ulam–Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.</description><subject>Applications of Mathematics</subject><subject>Auxins</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Hypotheses</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Localization</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Membrane Transport Proteins</subject><subject>Parameter identification</subject><subject>Pin1 protein</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Proteins</subject><subject>Scaling</subject><subject>Traveling waves</subject><issn>0303-6812</issn><issn>1432-1416</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PwzAQhi0EoqXwBxhQEAuL4WwndrwgoYovqRIDMFuu65RUaVzspMC_xzSlfAxMN9xz7917L0KHBM4IgDgPADTPMFCKgQjJcLaF-iRlFJOU8G3UBwYM85zQHtoLYQaRyiTZRT3GCWcZF310_GB0VdbTxNtKN6WrQ1I4n-j2rayTV720YR_tFLoK9mBdB-jp-upxeItH9zd3w8sRNqlIGyxBpIJanYtcW1vkKZ-AMLkkRNCMGjkGTbSR1FjJjTGyYFwawy1lVkjNx2yALjrdRTue24mxdeN1pRa-nGv_rpwu1e9OXT6rqVsqmREqOIsCp2sB715aGxo1L4OxVaVr69qgqCB5xOKjInryB5251tfR3ooCkFTQSNGOMt6F4G2xOYaA-kxAdQmomIBaJaCyOHT008Zm5OvlEWAdEGKrnlr_vfsf2Q9f7ZA-</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bakker, Bente Hilde</creator><creator>Faver, Timothy E.</creator><creator>Hupkes, Hermen Jan</creator><creator>Merks, Roeland M. H.</creator><creator>van der Voort, Jelle</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6974-8090</orcidid><orcidid>https://orcid.org/0000-0002-8914-7820</orcidid><orcidid>https://orcid.org/0000-0003-1726-5323</orcidid><orcidid>https://orcid.org/0000-0002-6152-687X</orcidid><orcidid>https://orcid.org/0000-0002-7710-3222</orcidid></search><sort><creationdate>20221001</creationdate><title>Scaling relations for auxin waves</title><author>Bakker, Bente Hilde ; Faver, Timothy E. ; Hupkes, Hermen Jan ; Merks, Roeland M. H. ; van der Voort, Jelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Auxins</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Hypotheses</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Localization</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Membrane Transport Proteins</topic><topic>Parameter identification</topic><topic>Pin1 protein</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Proteins</topic><topic>Scaling</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakker, Bente Hilde</creatorcontrib><creatorcontrib>Faver, Timothy E.</creatorcontrib><creatorcontrib>Hupkes, Hermen Jan</creatorcontrib><creatorcontrib>Merks, Roeland M. H.</creatorcontrib><creatorcontrib>van der Voort, Jelle</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakker, Bente Hilde</au><au>Faver, Timothy E.</au><au>Hupkes, Hermen Jan</au><au>Merks, Roeland M. H.</au><au>van der Voort, Jelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling relations for auxin waves</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>85</volume><issue>4</issue><spage>41</spage><pages>41-</pages><artnum>41</artnum><issn>0303-6812</issn><issn>1432-1416</issn><eissn>1432-1416</eissn><abstract>We analyze an ‘up-the-gradient’ model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi–Pasta–Ulam–Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36163567</pmid><doi>10.1007/s00285-022-01793-5</doi><orcidid>https://orcid.org/0000-0001-6974-8090</orcidid><orcidid>https://orcid.org/0000-0002-8914-7820</orcidid><orcidid>https://orcid.org/0000-0003-1726-5323</orcidid><orcidid>https://orcid.org/0000-0002-6152-687X</orcidid><orcidid>https://orcid.org/0000-0002-7710-3222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2022-10, Vol.85 (4), p.41, Article 41
issn 0303-6812
1432-1416
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9512763
source Springer Link
subjects Applications of Mathematics
Auxins
Biological Transport
Biology
Hypotheses
Indoleacetic Acids - metabolism
Localization
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Membrane Transport Proteins
Parameter identification
Pin1 protein
Plant Growth Regulators - metabolism
Proteins
Scaling
Traveling waves
title Scaling relations for auxin waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20relations%20for%20auxin%20waves&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Bakker,%20Bente%20Hilde&rft.date=2022-10-01&rft.volume=85&rft.issue=4&rft.spage=41&rft.pages=41-&rft.artnum=41&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-022-01793-5&rft_dat=%3Cproquest_pubme%3E2718009272%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-907472ea878aeef846d07c89117252c9b0a1ac92ce96ccc9f369cc6e23e79a6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2718009272&rft_id=info:pmid/36163567&rfr_iscdi=true