Loading…

Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions

Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-09, Vol.19 (18), p.11830
Main Authors: Borde, Johannes P, Glaser, Rüdiger, Braun, Klaus, Riach, Nils, Hologa, Rafael, Kaier, Klaus, Chitimia-Dobler, Lidia, Dobler, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3
cites cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3
container_end_page
container_issue 18
container_start_page 11830
container_title International journal of environmental research and public health
container_volume 19
creator Borde, Johannes P
Glaser, Rüdiger
Braun, Klaus
Riach, Nils
Hologa, Rafael
Kaier, Klaus
Chitimia-Dobler, Lidia
Dobler, Gerhard
description Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). : Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.
doi_str_mv 10.3390/ijerph191811830
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716547611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</originalsourceid><addsrcrecordid>eNpdkU1vVCEYhYnR2A9duzMkrm_LOwzciwuT6ViryfixaN2S9wJ3LpMZuAJjMr_Cvyy1tamuIPCcw3k5hLwCdsa5Yud-49I0goIOoOPsCTkGKVkzlwyePtofkZOcN4zxbi7Vc3LEJcxnwMQx-fXemWh9WNMyOnrl4jrhNB5oHOgXLPuEW3p9cfmdfvYmxSEaT32oWNphOLyli1tFLlh8Lt5UdjFNKaIZ6QVmZ2kMdIXBNjfZ0W9Yiksh03pAl1u_wxK3cf1HtozB-uJjyC_IswG32b28X0_JzYfL6-XHZvX16tNysWpMDV4aPiDvxeAU9NBzwMG00ElUHeOqEzMcLCpuLJfOiNbMBDKBtlNdHdoK7Ht-St7d-U77fuescaHUWfWUaq500BG9_vcm-FGv40-tBLTAVTV4c2-Q4o-9y0Vv4j6FmlnPWpBi3kqASp3fUfX3ck5ueHgBmL5tUP_XYFW8fhzsgf9bGf8N-eGatA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716547611</pqid></control><display><type>article</type><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</creator><creatorcontrib>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</creatorcontrib><description>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). : Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph191811830</identifier><identifier>PMID: 36142105</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air temperature ; Animals ; Arachnids ; Coniferous forests ; Datasets ; Disease transmission ; Encephalitis ; Encephalitis Viruses, Tick-Borne ; Encephalitis, Tick-Borne ; Epidemiology ; Evapotranspiration ; Geography ; Geostatistics ; Germany ; High resolution ; Humans ; Infections ; Ixodes ; Land cover ; Land use ; Neurological diseases ; Prediction models ; Rodents ; Ticks ; Viruses ; Zoonoses</subject><ispartof>International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11830</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</citedby><cites>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</cites><orcidid>0000-0001-6819-2764 ; 0000-0002-1175-4778 ; 0000-0003-0100-5615 ; 0000-0001-7880-2271 ; 0000-0001-7461-293X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716547611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716547611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36142105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borde, Johannes P</creatorcontrib><creatorcontrib>Glaser, Rüdiger</creatorcontrib><creatorcontrib>Braun, Klaus</creatorcontrib><creatorcontrib>Riach, Nils</creatorcontrib><creatorcontrib>Hologa, Rafael</creatorcontrib><creatorcontrib>Kaier, Klaus</creatorcontrib><creatorcontrib>Chitimia-Dobler, Lidia</creatorcontrib><creatorcontrib>Dobler, Gerhard</creatorcontrib><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). : Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</description><subject>Air temperature</subject><subject>Animals</subject><subject>Arachnids</subject><subject>Coniferous forests</subject><subject>Datasets</subject><subject>Disease transmission</subject><subject>Encephalitis</subject><subject>Encephalitis Viruses, Tick-Borne</subject><subject>Encephalitis, Tick-Borne</subject><subject>Epidemiology</subject><subject>Evapotranspiration</subject><subject>Geography</subject><subject>Geostatistics</subject><subject>Germany</subject><subject>High resolution</subject><subject>Humans</subject><subject>Infections</subject><subject>Ixodes</subject><subject>Land cover</subject><subject>Land use</subject><subject>Neurological diseases</subject><subject>Prediction models</subject><subject>Rodents</subject><subject>Ticks</subject><subject>Viruses</subject><subject>Zoonoses</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1vVCEYhYnR2A9duzMkrm_LOwzciwuT6ViryfixaN2S9wJ3LpMZuAJjMr_Cvyy1tamuIPCcw3k5hLwCdsa5Yud-49I0goIOoOPsCTkGKVkzlwyePtofkZOcN4zxbi7Vc3LEJcxnwMQx-fXemWh9WNMyOnrl4jrhNB5oHOgXLPuEW3p9cfmdfvYmxSEaT32oWNphOLyli1tFLlh8Lt5UdjFNKaIZ6QVmZ2kMdIXBNjfZ0W9Yiksh03pAl1u_wxK3cf1HtozB-uJjyC_IswG32b28X0_JzYfL6-XHZvX16tNysWpMDV4aPiDvxeAU9NBzwMG00ElUHeOqEzMcLCpuLJfOiNbMBDKBtlNdHdoK7Ht-St7d-U77fuescaHUWfWUaq500BG9_vcm-FGv40-tBLTAVTV4c2-Q4o-9y0Vv4j6FmlnPWpBi3kqASp3fUfX3ck5ueHgBmL5tUP_XYFW8fhzsgf9bGf8N-eGatA</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Borde, Johannes P</creator><creator>Glaser, Rüdiger</creator><creator>Braun, Klaus</creator><creator>Riach, Nils</creator><creator>Hologa, Rafael</creator><creator>Kaier, Klaus</creator><creator>Chitimia-Dobler, Lidia</creator><creator>Dobler, Gerhard</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6819-2764</orcidid><orcidid>https://orcid.org/0000-0002-1175-4778</orcidid><orcidid>https://orcid.org/0000-0003-0100-5615</orcidid><orcidid>https://orcid.org/0000-0001-7880-2271</orcidid><orcidid>https://orcid.org/0000-0001-7461-293X</orcidid></search><sort><creationdate>20220919</creationdate><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><author>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Animals</topic><topic>Arachnids</topic><topic>Coniferous forests</topic><topic>Datasets</topic><topic>Disease transmission</topic><topic>Encephalitis</topic><topic>Encephalitis Viruses, Tick-Borne</topic><topic>Encephalitis, Tick-Borne</topic><topic>Epidemiology</topic><topic>Evapotranspiration</topic><topic>Geography</topic><topic>Geostatistics</topic><topic>Germany</topic><topic>High resolution</topic><topic>Humans</topic><topic>Infections</topic><topic>Ixodes</topic><topic>Land cover</topic><topic>Land use</topic><topic>Neurological diseases</topic><topic>Prediction models</topic><topic>Rodents</topic><topic>Ticks</topic><topic>Viruses</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borde, Johannes P</creatorcontrib><creatorcontrib>Glaser, Rüdiger</creatorcontrib><creatorcontrib>Braun, Klaus</creatorcontrib><creatorcontrib>Riach, Nils</creatorcontrib><creatorcontrib>Hologa, Rafael</creatorcontrib><creatorcontrib>Kaier, Klaus</creatorcontrib><creatorcontrib>Chitimia-Dobler, Lidia</creatorcontrib><creatorcontrib>Dobler, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borde, Johannes P</au><au>Glaser, Rüdiger</au><au>Braun, Klaus</au><au>Riach, Nils</au><au>Hologa, Rafael</au><au>Kaier, Klaus</au><au>Chitimia-Dobler, Lidia</au><au>Dobler, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-09-19</date><risdate>2022</risdate><volume>19</volume><issue>18</issue><spage>11830</spage><pages>11830-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model. We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany. The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). : Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36142105</pmid><doi>10.3390/ijerph191811830</doi><orcidid>https://orcid.org/0000-0001-6819-2764</orcidid><orcidid>https://orcid.org/0000-0002-1175-4778</orcidid><orcidid>https://orcid.org/0000-0003-0100-5615</orcidid><orcidid>https://orcid.org/0000-0001-7880-2271</orcidid><orcidid>https://orcid.org/0000-0001-7461-293X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11830
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517139
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central
subjects Air temperature
Animals
Arachnids
Coniferous forests
Datasets
Disease transmission
Encephalitis
Encephalitis Viruses, Tick-Borne
Encephalitis, Tick-Borne
Epidemiology
Evapotranspiration
Geography
Geostatistics
Germany
High resolution
Humans
Infections
Ixodes
Land cover
Land use
Neurological diseases
Prediction models
Rodents
Ticks
Viruses
Zoonoses
title Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20Geography%20of%20Natural%20TBEV%20Microfoci%20in%20Germany:%20A%20Geostatistical%20Approach%20Based%20on%20Land-Use%20Patterns%20and%20Climatological%20Conditions&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Borde,%20Johannes%20P&rft.date=2022-09-19&rft.volume=19&rft.issue=18&rft.spage=11830&rft.pages=11830-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph191811830&rft_dat=%3Cproquest_pubme%3E2716547611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716547611&rft_id=info:pmid/36142105&rfr_iscdi=true