Loading…
Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions
Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities...
Saved in:
Published in: | International journal of environmental research and public health 2022-09, Vol.19 (18), p.11830 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3 |
container_end_page | |
container_issue | 18 |
container_start_page | 11830 |
container_title | International journal of environmental research and public health |
container_volume | 19 |
creator | Borde, Johannes P Glaser, Rüdiger Braun, Klaus Riach, Nils Hologa, Rafael Kaier, Klaus Chitimia-Dobler, Lidia Dobler, Gerhard |
description | Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model.
We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany.
The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%).
: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations. |
doi_str_mv | 10.3390/ijerph191811830 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716547611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</originalsourceid><addsrcrecordid>eNpdkU1vVCEYhYnR2A9duzMkrm_LOwzciwuT6ViryfixaN2S9wJ3LpMZuAJjMr_Cvyy1tamuIPCcw3k5hLwCdsa5Yud-49I0goIOoOPsCTkGKVkzlwyePtofkZOcN4zxbi7Vc3LEJcxnwMQx-fXemWh9WNMyOnrl4jrhNB5oHOgXLPuEW3p9cfmdfvYmxSEaT32oWNphOLyli1tFLlh8Lt5UdjFNKaIZ6QVmZ2kMdIXBNjfZ0W9Yiksh03pAl1u_wxK3cf1HtozB-uJjyC_IswG32b28X0_JzYfL6-XHZvX16tNysWpMDV4aPiDvxeAU9NBzwMG00ElUHeOqEzMcLCpuLJfOiNbMBDKBtlNdHdoK7Ht-St7d-U77fuescaHUWfWUaq500BG9_vcm-FGv40-tBLTAVTV4c2-Q4o-9y0Vv4j6FmlnPWpBi3kqASp3fUfX3ck5ueHgBmL5tUP_XYFW8fhzsgf9bGf8N-eGatA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716547611</pqid></control><display><type>article</type><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><creator>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</creator><creatorcontrib>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</creatorcontrib><description>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model.
We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany.
The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%).
: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph191811830</identifier><identifier>PMID: 36142105</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Air temperature ; Animals ; Arachnids ; Coniferous forests ; Datasets ; Disease transmission ; Encephalitis ; Encephalitis Viruses, Tick-Borne ; Encephalitis, Tick-Borne ; Epidemiology ; Evapotranspiration ; Geography ; Geostatistics ; Germany ; High resolution ; Humans ; Infections ; Ixodes ; Land cover ; Land use ; Neurological diseases ; Prediction models ; Rodents ; Ticks ; Viruses ; Zoonoses</subject><ispartof>International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11830</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</citedby><cites>FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</cites><orcidid>0000-0001-6819-2764 ; 0000-0002-1175-4778 ; 0000-0003-0100-5615 ; 0000-0001-7880-2271 ; 0000-0001-7461-293X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716547611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716547611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36142105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borde, Johannes P</creatorcontrib><creatorcontrib>Glaser, Rüdiger</creatorcontrib><creatorcontrib>Braun, Klaus</creatorcontrib><creatorcontrib>Riach, Nils</creatorcontrib><creatorcontrib>Hologa, Rafael</creatorcontrib><creatorcontrib>Kaier, Klaus</creatorcontrib><creatorcontrib>Chitimia-Dobler, Lidia</creatorcontrib><creatorcontrib>Dobler, Gerhard</creatorcontrib><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model.
We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany.
The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%).
: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</description><subject>Air temperature</subject><subject>Animals</subject><subject>Arachnids</subject><subject>Coniferous forests</subject><subject>Datasets</subject><subject>Disease transmission</subject><subject>Encephalitis</subject><subject>Encephalitis Viruses, Tick-Borne</subject><subject>Encephalitis, Tick-Borne</subject><subject>Epidemiology</subject><subject>Evapotranspiration</subject><subject>Geography</subject><subject>Geostatistics</subject><subject>Germany</subject><subject>High resolution</subject><subject>Humans</subject><subject>Infections</subject><subject>Ixodes</subject><subject>Land cover</subject><subject>Land use</subject><subject>Neurological diseases</subject><subject>Prediction models</subject><subject>Rodents</subject><subject>Ticks</subject><subject>Viruses</subject><subject>Zoonoses</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1vVCEYhYnR2A9duzMkrm_LOwzciwuT6ViryfixaN2S9wJ3LpMZuAJjMr_Cvyy1tamuIPCcw3k5hLwCdsa5Yud-49I0goIOoOPsCTkGKVkzlwyePtofkZOcN4zxbi7Vc3LEJcxnwMQx-fXemWh9WNMyOnrl4jrhNB5oHOgXLPuEW3p9cfmdfvYmxSEaT32oWNphOLyli1tFLlh8Lt5UdjFNKaIZ6QVmZ2kMdIXBNjfZ0W9Yiksh03pAl1u_wxK3cf1HtozB-uJjyC_IswG32b28X0_JzYfL6-XHZvX16tNysWpMDV4aPiDvxeAU9NBzwMG00ElUHeOqEzMcLCpuLJfOiNbMBDKBtlNdHdoK7Ht-St7d-U77fuescaHUWfWUaq500BG9_vcm-FGv40-tBLTAVTV4c2-Q4o-9y0Vv4j6FmlnPWpBi3kqASp3fUfX3ck5ueHgBmL5tUP_XYFW8fhzsgf9bGf8N-eGatA</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Borde, Johannes P</creator><creator>Glaser, Rüdiger</creator><creator>Braun, Klaus</creator><creator>Riach, Nils</creator><creator>Hologa, Rafael</creator><creator>Kaier, Klaus</creator><creator>Chitimia-Dobler, Lidia</creator><creator>Dobler, Gerhard</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6819-2764</orcidid><orcidid>https://orcid.org/0000-0002-1175-4778</orcidid><orcidid>https://orcid.org/0000-0003-0100-5615</orcidid><orcidid>https://orcid.org/0000-0001-7880-2271</orcidid><orcidid>https://orcid.org/0000-0001-7461-293X</orcidid></search><sort><creationdate>20220919</creationdate><title>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</title><author>Borde, Johannes P ; Glaser, Rüdiger ; Braun, Klaus ; Riach, Nils ; Hologa, Rafael ; Kaier, Klaus ; Chitimia-Dobler, Lidia ; Dobler, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Animals</topic><topic>Arachnids</topic><topic>Coniferous forests</topic><topic>Datasets</topic><topic>Disease transmission</topic><topic>Encephalitis</topic><topic>Encephalitis Viruses, Tick-Borne</topic><topic>Encephalitis, Tick-Borne</topic><topic>Epidemiology</topic><topic>Evapotranspiration</topic><topic>Geography</topic><topic>Geostatistics</topic><topic>Germany</topic><topic>High resolution</topic><topic>Humans</topic><topic>Infections</topic><topic>Ixodes</topic><topic>Land cover</topic><topic>Land use</topic><topic>Neurological diseases</topic><topic>Prediction models</topic><topic>Rodents</topic><topic>Ticks</topic><topic>Viruses</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borde, Johannes P</creatorcontrib><creatorcontrib>Glaser, Rüdiger</creatorcontrib><creatorcontrib>Braun, Klaus</creatorcontrib><creatorcontrib>Riach, Nils</creatorcontrib><creatorcontrib>Hologa, Rafael</creatorcontrib><creatorcontrib>Kaier, Klaus</creatorcontrib><creatorcontrib>Chitimia-Dobler, Lidia</creatorcontrib><creatorcontrib>Dobler, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borde, Johannes P</au><au>Glaser, Rüdiger</au><au>Braun, Klaus</au><au>Riach, Nils</au><au>Hologa, Rafael</au><au>Kaier, Klaus</au><au>Chitimia-Dobler, Lidia</au><au>Dobler, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-09-19</date><risdate>2022</risdate><volume>19</volume><issue>18</issue><spage>11830</spage><pages>11830-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a geostatistical model.
We aim to consider the specification of environmental characteristics of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical and climatological data sources. We use a two-step geostatistical approach, where in a first step, the characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control or comparator set of 3575 sampling points covering Germany are compared using Fisher's Exact Test. In the second step, we select the most important variables, which are then used in a MaxEnt distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of TBEV covering the entire area of Germany.
The findings from the MaxEnt prediction model indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have the highest contribution to our model. These two variables are followed by four additional variables with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous and mixed forest border (7.0%).
: Our findings are based on defined TBEV microfoci with known histories of infection and the repeated confirmation of the virus in the last years, resulting in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our model. The results may be used to tailor specific regional preventive measures and investigations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36142105</pmid><doi>10.3390/ijerph191811830</doi><orcidid>https://orcid.org/0000-0001-6819-2764</orcidid><orcidid>https://orcid.org/0000-0002-1175-4778</orcidid><orcidid>https://orcid.org/0000-0003-0100-5615</orcidid><orcidid>https://orcid.org/0000-0001-7880-2271</orcidid><orcidid>https://orcid.org/0000-0001-7461-293X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11830 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517139 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central |
subjects | Air temperature Animals Arachnids Coniferous forests Datasets Disease transmission Encephalitis Encephalitis Viruses, Tick-Borne Encephalitis, Tick-Borne Epidemiology Evapotranspiration Geography Geostatistics Germany High resolution Humans Infections Ixodes Land cover Land use Neurological diseases Prediction models Rodents Ticks Viruses Zoonoses |
title | Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20Geography%20of%20Natural%20TBEV%20Microfoci%20in%20Germany:%20A%20Geostatistical%20Approach%20Based%20on%20Land-Use%20Patterns%20and%20Climatological%20Conditions&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Borde,%20Johannes%20P&rft.date=2022-09-19&rft.volume=19&rft.issue=18&rft.spage=11830&rft.pages=11830-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph191811830&rft_dat=%3Cproquest_pubme%3E2716547611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-3fa3b5fe91b1b31afc7186a98039852afda93cd36ec57c25a05ad898210d5abb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716547611&rft_id=info:pmid/36142105&rfr_iscdi=true |