Loading…

Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology

Sasang constitutional medicine emphasizes personalized disease prevention and treatment and has been used in various fields. Nevertheless, more efforts are required to improve the validity and reliability of the Sasang analysis tools. Hence, this study aimed to (1) identify key constructs and measur...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2022-09, Vol.19 (18), p.11820
Main Authors: Kim, Soon Mi, Ryu, Jeongkun, Park, Eunhye Olivia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13
cites cdi_FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13
container_end_page
container_issue 18
container_start_page 11820
container_title International journal of environmental research and public health
container_volume 19
creator Kim, Soon Mi
Ryu, Jeongkun
Park, Eunhye Olivia
description Sasang constitutional medicine emphasizes personalized disease prevention and treatment and has been used in various fields. Nevertheless, more efforts are required to improve the validity and reliability of the Sasang analysis tools. Hence, this study aimed to (1) identify key constructs and measurement items of the Sasang constitution questionnaire that characterize different Sasang constitutions and (2) investigate the similarities and differences in pathophysiological and personality traits between Sasang constitutions. The results of the Sasang constitution questionnaire were analyzed using multiple machine learning-based approaches, including feature selection, hierarchical clustering analysis, and multiple correspondence analysis. The selected 47 key measurement items were clustered into six groups based on the similarity measures. The findings of this study are expected to be beneficial for future research on the development of more robust and reliable Sasang conservation questionnaires, allowing Sasang constitutional medicine to be more widely implemented in various sectors.
doi_str_mv 10.3390/ijerph191811820
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717686383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaNKk596KoJdethl9WJYvhbDpR2BLKU3OQpHHu1psyZXswP73lUkakpxmYH7vMY9HyHsGn4Vo4NzvMY071jDNmObwipwwpWAlFbDXT_Zj8jbnPYDQUjVvyLFQTHJo4IQMP63b-YB0gzYFH7b0Yhx77-zkY8i0i4lOO6SXeId9HAcME40dtfT3jHlBgvUJ6RTpVVtuvjvQPzbbYrMu8slP8wLR68MY-7g9nJGjzvYZ3z3MU3Lz7ev1-sdq8-v71fpis3KSs2klW8U7J9GCFgpaaJtW17ddw61D1LIGkFJyV1W1Rg6s5g4rJysEDhKsZeKUfLn3HefbAVtXXku2N2Pyg00HE603zy_B78w23pmmYrUAVQw-PRik-HeJagafHfa9DRjnbHjNaqWV0KKgH1-g-zinUOItlKpkozQv1Pk95VLMOWH3-AwDs1RpXlRZFB-eZnjk_3cn_gHoc5zJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716549682</pqid></control><display><type>article</type><title>Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Soon Mi ; Ryu, Jeongkun ; Park, Eunhye Olivia</creator><creatorcontrib>Kim, Soon Mi ; Ryu, Jeongkun ; Park, Eunhye Olivia</creatorcontrib><description>Sasang constitutional medicine emphasizes personalized disease prevention and treatment and has been used in various fields. Nevertheless, more efforts are required to improve the validity and reliability of the Sasang analysis tools. Hence, this study aimed to (1) identify key constructs and measurement items of the Sasang constitution questionnaire that characterize different Sasang constitutions and (2) investigate the similarities and differences in pathophysiological and personality traits between Sasang constitutions. The results of the Sasang constitution questionnaire were analyzed using multiple machine learning-based approaches, including feature selection, hierarchical clustering analysis, and multiple correspondence analysis. The selected 47 key measurement items were clustered into six groups based on the similarity measures. The findings of this study are expected to be beneficial for future research on the development of more robust and reliable Sasang conservation questionnaires, allowing Sasang constitutional medicine to be more widely implemented in various sectors.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph191811820</identifier><identifier>PMID: 36142090</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chinese medicine ; Clustering ; Constitutional law ; Data analysis ; Disease prevention ; Eating behavior ; Health care ; Identification ; Learning algorithms ; Machine Learning ; Medicine ; Medicine, Korean Traditional ; Personality ; Personality traits ; Physiology ; Polls &amp; surveys ; Preventive medicine ; Questionnaires ; Reliability analysis ; Reproducibility of Results ; Surveys and Questionnaires ; Typology</subject><ispartof>International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11820</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13</citedby><cites>FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716549682/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716549682?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36142090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Soon Mi</creatorcontrib><creatorcontrib>Ryu, Jeongkun</creatorcontrib><creatorcontrib>Park, Eunhye Olivia</creatorcontrib><title>Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Sasang constitutional medicine emphasizes personalized disease prevention and treatment and has been used in various fields. Nevertheless, more efforts are required to improve the validity and reliability of the Sasang analysis tools. Hence, this study aimed to (1) identify key constructs and measurement items of the Sasang constitution questionnaire that characterize different Sasang constitutions and (2) investigate the similarities and differences in pathophysiological and personality traits between Sasang constitutions. The results of the Sasang constitution questionnaire were analyzed using multiple machine learning-based approaches, including feature selection, hierarchical clustering analysis, and multiple correspondence analysis. The selected 47 key measurement items were clustered into six groups based on the similarity measures. The findings of this study are expected to be beneficial for future research on the development of more robust and reliable Sasang conservation questionnaires, allowing Sasang constitutional medicine to be more widely implemented in various sectors.</description><subject>Chinese medicine</subject><subject>Clustering</subject><subject>Constitutional law</subject><subject>Data analysis</subject><subject>Disease prevention</subject><subject>Eating behavior</subject><subject>Health care</subject><subject>Identification</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine</subject><subject>Medicine, Korean Traditional</subject><subject>Personality</subject><subject>Personality traits</subject><subject>Physiology</subject><subject>Polls &amp; surveys</subject><subject>Preventive medicine</subject><subject>Questionnaires</subject><subject>Reliability analysis</subject><subject>Reproducibility of Results</subject><subject>Surveys and Questionnaires</subject><subject>Typology</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1r3DAQxUVpaNKk596KoJdethl9WJYvhbDpR2BLKU3OQpHHu1psyZXswP73lUkakpxmYH7vMY9HyHsGn4Vo4NzvMY071jDNmObwipwwpWAlFbDXT_Zj8jbnPYDQUjVvyLFQTHJo4IQMP63b-YB0gzYFH7b0Yhx77-zkY8i0i4lOO6SXeId9HAcME40dtfT3jHlBgvUJ6RTpVVtuvjvQPzbbYrMu8slP8wLR68MY-7g9nJGjzvYZ3z3MU3Lz7ev1-sdq8-v71fpis3KSs2klW8U7J9GCFgpaaJtW17ddw61D1LIGkFJyV1W1Rg6s5g4rJysEDhKsZeKUfLn3HefbAVtXXku2N2Pyg00HE603zy_B78w23pmmYrUAVQw-PRik-HeJagafHfa9DRjnbHjNaqWV0KKgH1-g-zinUOItlKpkozQv1Pk95VLMOWH3-AwDs1RpXlRZFB-eZnjk_3cn_gHoc5zJ</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Kim, Soon Mi</creator><creator>Ryu, Jeongkun</creator><creator>Park, Eunhye Olivia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220919</creationdate><title>Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology</title><author>Kim, Soon Mi ; Ryu, Jeongkun ; Park, Eunhye Olivia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chinese medicine</topic><topic>Clustering</topic><topic>Constitutional law</topic><topic>Data analysis</topic><topic>Disease prevention</topic><topic>Eating behavior</topic><topic>Health care</topic><topic>Identification</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine</topic><topic>Medicine, Korean Traditional</topic><topic>Personality</topic><topic>Personality traits</topic><topic>Physiology</topic><topic>Polls &amp; surveys</topic><topic>Preventive medicine</topic><topic>Questionnaires</topic><topic>Reliability analysis</topic><topic>Reproducibility of Results</topic><topic>Surveys and Questionnaires</topic><topic>Typology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soon Mi</creatorcontrib><creatorcontrib>Ryu, Jeongkun</creatorcontrib><creatorcontrib>Park, Eunhye Olivia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soon Mi</au><au>Ryu, Jeongkun</au><au>Park, Eunhye Olivia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-09-19</date><risdate>2022</risdate><volume>19</volume><issue>18</issue><spage>11820</spage><pages>11820-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Sasang constitutional medicine emphasizes personalized disease prevention and treatment and has been used in various fields. Nevertheless, more efforts are required to improve the validity and reliability of the Sasang analysis tools. Hence, this study aimed to (1) identify key constructs and measurement items of the Sasang constitution questionnaire that characterize different Sasang constitutions and (2) investigate the similarities and differences in pathophysiological and personality traits between Sasang constitutions. The results of the Sasang constitution questionnaire were analyzed using multiple machine learning-based approaches, including feature selection, hierarchical clustering analysis, and multiple correspondence analysis. The selected 47 key measurement items were clustered into six groups based on the similarity measures. The findings of this study are expected to be beneficial for future research on the development of more robust and reliable Sasang conservation questionnaires, allowing Sasang constitutional medicine to be more widely implemented in various sectors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36142090</pmid><doi>10.3390/ijerph191811820</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2022-09, Vol.19 (18), p.11820
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9517306
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Chinese medicine
Clustering
Constitutional law
Data analysis
Disease prevention
Eating behavior
Health care
Identification
Learning algorithms
Machine Learning
Medicine
Medicine, Korean Traditional
Personality
Personality traits
Physiology
Polls & surveys
Preventive medicine
Questionnaires
Reliability analysis
Reproducibility of Results
Surveys and Questionnaires
Typology
title Machine Learning Applications for the Development of a Questionnaire to Identify Sasang Constitution Typology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Applications%20for%20the%20Development%20of%20a%20Questionnaire%20to%20Identify%20Sasang%20Constitution%20Typology&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Kim,%20Soon%20Mi&rft.date=2022-09-19&rft.volume=19&rft.issue=18&rft.spage=11820&rft.pages=11820-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph191811820&rft_dat=%3Cproquest_pubme%3E2717686383%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-4d62fc4ea08360d0d9d87bf92acee847004442c5578e20172ce5c45e02040aa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716549682&rft_id=info:pmid/36142090&rfr_iscdi=true