Loading…

Evaluating the Breadth of Neutralizing Antibody Responses Elicited by Infectious Bursal Disease Virus Genogroup A1 Strains Using a Novel Chicken B-Cell Rescue System and Neutralization Assay

Eight infectious bursal disease virus (IBDV) genogroups have been identified based on the sequence of the capsid hypervariable region (HVR) (A1 to A8). Given reported vaccine failures, there is a need to evaluate the ability of vaccines to neutralize the different genogroups. To address this, we use...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2022-09, Vol.96 (18), p.e0125522-e0125522
Main Authors: Reddy, Vishwanatha R A P, Nazki, Salik, Brodrick, Andrew J, Asfor, Amin, Urbaniec, Joanna, Morris, Yasmin, Broadbent, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eight infectious bursal disease virus (IBDV) genogroups have been identified based on the sequence of the capsid hypervariable region (HVR) (A1 to A8). Given reported vaccine failures, there is a need to evaluate the ability of vaccines to neutralize the different genogroups. To address this, we used a reverse genetics system and the chicken B-cell line DT40 to rescue a panel of chimeric IBDVs and perform neutralization assays. Chimeric viruses had the backbone of a lab-adapted strain (PBG98) and the HVRs from diverse field strains as follows: classical F52-70 (A1), U.S. variant Del-E (A2), Chinese variant SHG19 (A2), very virulent UK661 (A3), M04/09 distinct (A4), Italian ITA-04 (A6), and Australian variant Vic-01/94 (A8). Rescued viruses showed no substitutions at amino acid positions 253, 284, or 330, previously found to be associated with cell-culture adaptation. Sera from chickens inoculated with wild-type (wt) (F52-70) or vaccine (228E) A1 strains had the highest mean virus neutralization (VN) titers against the A1 virus (log 15.4 and 12.7) and the lowest against A2 viruses (log 7.4 to 7.9;  = 0.0001 to 0.0274), consistent with A1 viruses being most antigenically distant from A2 strains, which correlated with the extent of differences in the predicted HVR structure. VN titers against the other genogroups ranged from log 9.3 to 13.3, and A1 strains were likely more closely antigenically related to genogroups A3 and A4 than A6 and A8. Our data are consistent with field observations and validate the new method, which can be used to screen future vaccine candidates for breadth of neutralizing antibodies and evaluate the antigenic relatedness of different genogroups. There is a need to evaluate the ability of vaccines to neutralize diverse IBDV genogroups and to better understand the relationship between HVR sequence, structure, and antigenicity. Here, we used a chicken B-cell line to rescue a panel of chimeric IBDVs with the HVR from seven diverse IBDV field strains and to conduct neutralization assays and protein modeling. We evaluated the ability of sera from vaccinated or infected birds to neutralize the different genogroups. Our novel chicken B-cell rescue system and neutralization assay can be used to screen IBDV vaccine candidates, platforms, and regimens for the breadth of neutralizing antibody responses elicited, evaluate the antigenic relatedness of diverse IBDV strains, and when coupled with structural modeling, elucidate immunodominant and con
ISSN:0022-538X
1098-5514
DOI:10.1128/jvi.01255-22