Loading…

Densely methylated DNA traps Methyl-CpG–binding domain protein 2 but permits free diffusion by Methyl-CpG–binding domain protein 3

The methyl-CpG–binding domain 2 and 3 proteins (MBD2 and MBD3) provide structural and DNA-binding function for the Nucleosome Remodeling and Deacetylase (NuRD) complex. The two proteins form distinct NuRD complexes and show different binding affinity and selectivity for methylated DNA. Previous stud...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2022-10, Vol.298 (10), p.102428, Article 102428
Main Authors: Leighton, Gage O., Irvin, Elizabeth Marie, Kaur, Parminder, Liu, Ming, You, Changjiang, Bhattaram, Dhruv, Piehler, Jacob, Riehn, Robert, Wang, Hong, Pan, Hai, Williams, David C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The methyl-CpG–binding domain 2 and 3 proteins (MBD2 and MBD3) provide structural and DNA-binding function for the Nucleosome Remodeling and Deacetylase (NuRD) complex. The two proteins form distinct NuRD complexes and show different binding affinity and selectivity for methylated DNA. Previous studies have shown that MBD2 binds with high affinity and selectivity for a single methylated CpG dinucleotide while MBD3 does not. However, the NuRD complex functions in regions of the genome that contain many CpG dinucleotides (CpG islands). Therefore, in this work, we investigate the binding and diffusion of MBD2 and MBD3 on more biologically relevant DNA templates that contain a large CpG island or limited CpG sites. Using a combination of single-molecule and biophysical analyses, we show that both MBD2 and MBD3 diffuse freely and rapidly across unmethylated CpG-rich DNA. In contrast, we found methylation of large CpG islands traps MBD2 leading to stable and apparently static binding on the CpG island while MBD3 continues to diffuse freely. In addition, we demonstrate both proteins bend DNA, which is augmented by methylation. Together, these studies support a model in which MBD2-NuRD strongly localizes to and compacts methylated CpG islands while MBD3-NuRD can freely mobilize nucleosomes independent of methylation status.
ISSN:0021-9258
1083-351X
DOI:10.1016/j.jbc.2022.102428