Loading…

Scutellarin suppresses triple-negative breast cancer metastasis by inhibiting TNFα-induced vascular endothelial barrier breakdown

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high vascularity and frequent metastasis. Tumor-associated abnormal vasculature was reported to accelerate TNBC metastasis. Scutellarin (SC) is a natural flavonoid with a cardiovascular protective function. In this s...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmacologica Sinica 2022-10, Vol.43 (10), p.2666-2677
Main Authors: Mei, Xi-yu, Zhang, Jing-nan, Jia, Wang-ya, Lu, Bin, Wang, Meng-na, Zhang, Tian-yu, Ji, Li-li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high vascularity and frequent metastasis. Tumor-associated abnormal vasculature was reported to accelerate TNBC metastasis. Scutellarin (SC) is a natural flavonoid with a cardiovascular protective function. In this study, SC reduced TNBC metastasis and alleviated tumor-associated vascular endothelial barrier injury in vivo. SC rescued the tumor necrosis factor-α (TNFα)-induced diminishment of endothelial junctional proteins and dysfunction of the endothelial barrier in vitro. SC reduced the increased transendothelial migration of TNBC cells through a monolayer composed of TNFα-stimulated human mammary microvascular endothelial cells (HMMECs) or human umbilical vein endothelial cells (HUVECs). TNFα induced the nuclear translocation of enhancer of zeste homolog-2 (EZH2), and its chemical inhibitor GSK126 blocked TNFα-induced endothelial barrier disruption and subsequent TNBC transendothelial migration. TNF receptor 2 (TNFR2) is the main receptor by which TNFα regulates endothelial barrier breakdown. Extracellular signal-regulated protein kinase (ERK)1/2 was found to be downstream of TNFα/TNFR2 and upstream of EZH2. Additionally, SC abrogated the TNFR2-ERK1/2-EZH2 signaling axis both in vivo and in vitro. Our results suggest that SC reduced TNBC metastasis by suppressing TNFα-initiated vascular endothelial barrier breakdown through rescuing the reduced expression of junctional proteins by regulating the TNFR2-ERK1/2-EZH2 signaling pathway.
ISSN:1671-4083
1745-7254
1745-7254
DOI:10.1038/s41401-022-00873-y