Loading…
Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion
Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine....
Saved in:
Published in: | Oxidative medicine and cellular longevity 2022-09, Vol.2022, p.1-18 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3 |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | Oxidative medicine and cellular longevity |
container_volume | 2022 |
creator | Mao, Hu Zhang, Ye Xiong, Yufeng Zhu, Zijing Wang, Lei Liu, Xiuheng |
description | Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R. |
doi_str_mv | 10.1155/2022/2213503 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9526615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721259033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQhyMEEqVw4wEscUGiYf03aS5I1RbaSq2KSjlbs_EkcbWxF9tp2Sfj9eqwqwo4cLDGkj9_Ho9-RfGW0Y-MKbXglPMF50woKp4VB6yRvKRNI58_7Sl9WbyK8Y7SSnDJDopfVzb5dvDOBAvlLYQeExpy4pL1P60Bl8hM_Jis8w7JFViX8orkz3trcu5H9DFBtJGkIfipH3JF8s2GJMpT3KAzmF1fIQ0PsCXJzwLbQ0JyPb-T7D2SUxihR7KEKeYeVltygy7LL2I74GhhcZM9oZui9e518aKDdcQ3-3pYfP_y-XZ5Xl5en10sTy7LVnKVypq3FZXHsKqR1YKLDqlooatppUwl2q5B1kmQHa5406jKyKqtqToGbLgCbow4LD7tvJtpNaJp8ycCrPUm2BHCVnuw-u8TZwfd-3vdKF5VTGXB-70g5CliTHq0scX1Ghz6KWpec8ZVQ4XI6Lt_0Ds_hTyB3xTlUgoxC492VBt8jAG7p2YY1XMM9BwDvY9Bxj_s8ME6Aw_2__QjJQK3Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720244335</pqid></control><display><type>article</type><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng</creator><contributor>Flora, Swaran J. S. ; Swaran J S Flora</contributor><creatorcontrib>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng ; Flora, Swaran J. S. ; Swaran J S Flora</creatorcontrib><description>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2022/2213503</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Antioxidants ; Apoptosis ; Autophagy ; Biotechnology ; Creatinine ; Homeostasis ; Ischemia ; Kidneys ; Laboratory animals ; Metabolism ; Metabolites ; Mitochondria ; Mitochondrial DNA ; Morphology ; Oxidative stress ; Reactive oxygen species ; Transmission electron microscopy</subject><ispartof>Oxidative medicine and cellular longevity, 2022-09, Vol.2022, p.1-18</ispartof><rights>Copyright © 2022 Hu Mao et al.</rights><rights>Copyright © 2022 Hu Mao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Hu Mao et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</citedby><cites>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</cites><orcidid>0000-0003-2615-3040 ; 0000-0001-9945-6777 ; 0000-0003-2252-5572 ; 0000-0001-9810-1691 ; 0000-0001-8412-1130 ; 0000-0003-3882-2715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2720244335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2720244335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Flora, Swaran J. S.</contributor><contributor>Swaran J S Flora</contributor><creatorcontrib>Mao, Hu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Xiong, Yufeng</creatorcontrib><creatorcontrib>Zhu, Zijing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Xiuheng</creatorcontrib><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><title>Oxidative medicine and cellular longevity</title><description>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</description><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biotechnology</subject><subject>Creatinine</subject><subject>Homeostasis</subject><subject>Ischemia</subject><subject>Kidneys</subject><subject>Laboratory animals</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>Oxidative stress</subject><subject>Reactive oxygen species</subject><subject>Transmission electron microscopy</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9ks9u1DAQhyMEEqVw4wEscUGiYf03aS5I1RbaSq2KSjlbs_EkcbWxF9tp2Sfj9eqwqwo4cLDGkj9_Ho9-RfGW0Y-MKbXglPMF50woKp4VB6yRvKRNI58_7Sl9WbyK8Y7SSnDJDopfVzb5dvDOBAvlLYQeExpy4pL1P60Bl8hM_Jis8w7JFViX8orkz3trcu5H9DFBtJGkIfipH3JF8s2GJMpT3KAzmF1fIQ0PsCXJzwLbQ0JyPb-T7D2SUxihR7KEKeYeVltygy7LL2I74GhhcZM9oZui9e518aKDdcQ3-3pYfP_y-XZ5Xl5en10sTy7LVnKVypq3FZXHsKqR1YKLDqlooatppUwl2q5B1kmQHa5406jKyKqtqToGbLgCbow4LD7tvJtpNaJp8ycCrPUm2BHCVnuw-u8TZwfd-3vdKF5VTGXB-70g5CliTHq0scX1Ghz6KWpec8ZVQ4XI6Lt_0Ds_hTyB3xTlUgoxC492VBt8jAG7p2YY1XMM9BwDvY9Bxj_s8ME6Aw_2__QjJQK3Jw</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Mao, Hu</creator><creator>Zhang, Ye</creator><creator>Xiong, Yufeng</creator><creator>Zhu, Zijing</creator><creator>Wang, Lei</creator><creator>Liu, Xiuheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2615-3040</orcidid><orcidid>https://orcid.org/0000-0001-9945-6777</orcidid><orcidid>https://orcid.org/0000-0003-2252-5572</orcidid><orcidid>https://orcid.org/0000-0001-9810-1691</orcidid><orcidid>https://orcid.org/0000-0001-8412-1130</orcidid><orcidid>https://orcid.org/0000-0003-3882-2715</orcidid></search><sort><creationdate>20220920</creationdate><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><author>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biotechnology</topic><topic>Creatinine</topic><topic>Homeostasis</topic><topic>Ischemia</topic><topic>Kidneys</topic><topic>Laboratory animals</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>Oxidative stress</topic><topic>Reactive oxygen species</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Hu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Xiong, Yufeng</creatorcontrib><creatorcontrib>Zhu, Zijing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Xiuheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Hu</au><au>Zhang, Ye</au><au>Xiong, Yufeng</au><au>Zhu, Zijing</au><au>Wang, Lei</au><au>Liu, Xiuheng</au><au>Flora, Swaran J. S.</au><au>Swaran J S Flora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2213503</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2615-3040</orcidid><orcidid>https://orcid.org/0000-0001-9945-6777</orcidid><orcidid>https://orcid.org/0000-0003-2252-5572</orcidid><orcidid>https://orcid.org/0000-0001-9810-1691</orcidid><orcidid>https://orcid.org/0000-0001-8412-1130</orcidid><orcidid>https://orcid.org/0000-0003-3882-2715</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0900 |
ispartof | Oxidative medicine and cellular longevity, 2022-09, Vol.2022, p.1-18 |
issn | 1942-0900 1942-0994 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9526615 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Antioxidants Apoptosis Autophagy Biotechnology Creatinine Homeostasis Ischemia Kidneys Laboratory animals Metabolism Metabolites Mitochondria Mitochondrial DNA Morphology Oxidative stress Reactive oxygen species Transmission electron microscopy |
title | Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondria-Targeted%20Antioxidant%20Mitoquinone%20Maintains%20Mitochondrial%20Homeostasis%20through%20the%20Sirt3-Dependent%20Pathway%20to%20Mitigate%20Oxidative%20Damage%20Caused%20by%20Renal%20Ischemia/Reperfusion&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Mao,%20Hu&rft.date=2022-09-20&rft.volume=2022&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2022/2213503&rft_dat=%3Cproquest_pubme%3E2721259033%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720244335&rft_id=info:pmid/&rfr_iscdi=true |