Loading…

Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion

Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine....

Full description

Saved in:
Bibliographic Details
Published in:Oxidative medicine and cellular longevity 2022-09, Vol.2022, p.1-18
Main Authors: Mao, Hu, Zhang, Ye, Xiong, Yufeng, Zhu, Zijing, Wang, Lei, Liu, Xiuheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3
cites cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3
container_end_page 18
container_issue
container_start_page 1
container_title Oxidative medicine and cellular longevity
container_volume 2022
creator Mao, Hu
Zhang, Ye
Xiong, Yufeng
Zhu, Zijing
Wang, Lei
Liu, Xiuheng
description Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.
doi_str_mv 10.1155/2022/2213503
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9526615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721259033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</originalsourceid><addsrcrecordid>eNp9ks9u1DAQhyMEEqVw4wEscUGiYf03aS5I1RbaSq2KSjlbs_EkcbWxF9tp2Sfj9eqwqwo4cLDGkj9_Ho9-RfGW0Y-MKbXglPMF50woKp4VB6yRvKRNI58_7Sl9WbyK8Y7SSnDJDopfVzb5dvDOBAvlLYQeExpy4pL1P60Bl8hM_Jis8w7JFViX8orkz3trcu5H9DFBtJGkIfipH3JF8s2GJMpT3KAzmF1fIQ0PsCXJzwLbQ0JyPb-T7D2SUxihR7KEKeYeVltygy7LL2I74GhhcZM9oZui9e518aKDdcQ3-3pYfP_y-XZ5Xl5en10sTy7LVnKVypq3FZXHsKqR1YKLDqlooatppUwl2q5B1kmQHa5406jKyKqtqToGbLgCbow4LD7tvJtpNaJp8ycCrPUm2BHCVnuw-u8TZwfd-3vdKF5VTGXB-70g5CliTHq0scX1Ghz6KWpec8ZVQ4XI6Lt_0Ds_hTyB3xTlUgoxC492VBt8jAG7p2YY1XMM9BwDvY9Bxj_s8ME6Aw_2__QjJQK3Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720244335</pqid></control><display><type>article</type><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng</creator><contributor>Flora, Swaran J. S. ; Swaran J S Flora</contributor><creatorcontrib>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng ; Flora, Swaran J. S. ; Swaran J S Flora</creatorcontrib><description>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2022/2213503</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Antioxidants ; Apoptosis ; Autophagy ; Biotechnology ; Creatinine ; Homeostasis ; Ischemia ; Kidneys ; Laboratory animals ; Metabolism ; Metabolites ; Mitochondria ; Mitochondrial DNA ; Morphology ; Oxidative stress ; Reactive oxygen species ; Transmission electron microscopy</subject><ispartof>Oxidative medicine and cellular longevity, 2022-09, Vol.2022, p.1-18</ispartof><rights>Copyright © 2022 Hu Mao et al.</rights><rights>Copyright © 2022 Hu Mao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Hu Mao et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</citedby><cites>FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</cites><orcidid>0000-0003-2615-3040 ; 0000-0001-9945-6777 ; 0000-0003-2252-5572 ; 0000-0001-9810-1691 ; 0000-0001-8412-1130 ; 0000-0003-3882-2715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2720244335/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2720244335?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Flora, Swaran J. S.</contributor><contributor>Swaran J S Flora</contributor><creatorcontrib>Mao, Hu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Xiong, Yufeng</creatorcontrib><creatorcontrib>Zhu, Zijing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Xiuheng</creatorcontrib><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><title>Oxidative medicine and cellular longevity</title><description>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</description><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Biotechnology</subject><subject>Creatinine</subject><subject>Homeostasis</subject><subject>Ischemia</subject><subject>Kidneys</subject><subject>Laboratory animals</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>Oxidative stress</subject><subject>Reactive oxygen species</subject><subject>Transmission electron microscopy</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9ks9u1DAQhyMEEqVw4wEscUGiYf03aS5I1RbaSq2KSjlbs_EkcbWxF9tp2Sfj9eqwqwo4cLDGkj9_Ho9-RfGW0Y-MKbXglPMF50woKp4VB6yRvKRNI58_7Sl9WbyK8Y7SSnDJDopfVzb5dvDOBAvlLYQeExpy4pL1P60Bl8hM_Jis8w7JFViX8orkz3trcu5H9DFBtJGkIfipH3JF8s2GJMpT3KAzmF1fIQ0PsCXJzwLbQ0JyPb-T7D2SUxihR7KEKeYeVltygy7LL2I74GhhcZM9oZui9e518aKDdcQ3-3pYfP_y-XZ5Xl5en10sTy7LVnKVypq3FZXHsKqR1YKLDqlooatppUwl2q5B1kmQHa5406jKyKqtqToGbLgCbow4LD7tvJtpNaJp8ycCrPUm2BHCVnuw-u8TZwfd-3vdKF5VTGXB-70g5CliTHq0scX1Ghz6KWpec8ZVQ4XI6Lt_0Ds_hTyB3xTlUgoxC492VBt8jAG7p2YY1XMM9BwDvY9Bxj_s8ME6Aw_2__QjJQK3Jw</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Mao, Hu</creator><creator>Zhang, Ye</creator><creator>Xiong, Yufeng</creator><creator>Zhu, Zijing</creator><creator>Wang, Lei</creator><creator>Liu, Xiuheng</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2615-3040</orcidid><orcidid>https://orcid.org/0000-0001-9945-6777</orcidid><orcidid>https://orcid.org/0000-0003-2252-5572</orcidid><orcidid>https://orcid.org/0000-0001-9810-1691</orcidid><orcidid>https://orcid.org/0000-0001-8412-1130</orcidid><orcidid>https://orcid.org/0000-0003-3882-2715</orcidid></search><sort><creationdate>20220920</creationdate><title>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</title><author>Mao, Hu ; Zhang, Ye ; Xiong, Yufeng ; Zhu, Zijing ; Wang, Lei ; Liu, Xiuheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Biotechnology</topic><topic>Creatinine</topic><topic>Homeostasis</topic><topic>Ischemia</topic><topic>Kidneys</topic><topic>Laboratory animals</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>Oxidative stress</topic><topic>Reactive oxygen species</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Hu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><creatorcontrib>Xiong, Yufeng</creatorcontrib><creatorcontrib>Zhu, Zijing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Xiuheng</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Hu</au><au>Zhang, Ye</au><au>Xiong, Yufeng</au><au>Zhu, Zijing</au><au>Wang, Lei</au><au>Liu, Xiuheng</au><au>Flora, Swaran J. S.</au><au>Swaran J S Flora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Mitochondrial dysfunction is a critical factor contributing to oxidative stress and apoptosis in ischemia-reperfusion (I/R) diseases. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant whose potent anti-I/R injury capacity has been demonstrated in organs such as the heart and the intestine. In the present study, we explored the role of MitoQ in maintaining mitochondrial homeostasis and attenuating oxidative damage in renal I/R injury. We discovered that the decreased renal function and pathological damage caused by renal I/R injury were significantly ameliorated by MitoQ. MitoQ markedly reversed mitochondrial damage after I/R injury and inhibited renal reactive oxygen species production. In vitro, hypoxia/reoxygenation resulted in increased mitochondrial fission and decreased mitochondrial fusion in human renal tubular epithelial cells (HK-2), which were partially prevented by MitoQ. MitoQ treatment inhibited oxidative stress and reduced apoptosis in HK-2 cells by restoring mitochondrial membrane potential, promoting ATP production, and facilitating mitochondrial fusion. Deeply, renal I/R injury led to a decreased expression of sirtuin-3 (Sirt3), which was recovered by MitoQ. Moreover, the inhibition of Sirt3 partially eliminated the protective effect of MitoQ on mitochondria and increased oxidative damage. Overall, our data demonstrate a mitochondrial protective effect of MitoQ, which raises the possibility of MitoQ as a novel therapy for renal I/R.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2213503</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2615-3040</orcidid><orcidid>https://orcid.org/0000-0001-9945-6777</orcidid><orcidid>https://orcid.org/0000-0003-2252-5572</orcidid><orcidid>https://orcid.org/0000-0001-9810-1691</orcidid><orcidid>https://orcid.org/0000-0001-8412-1130</orcidid><orcidid>https://orcid.org/0000-0003-3882-2715</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2022-09, Vol.2022, p.1-18
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9526615
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Antioxidants
Apoptosis
Autophagy
Biotechnology
Creatinine
Homeostasis
Ischemia
Kidneys
Laboratory animals
Metabolism
Metabolites
Mitochondria
Mitochondrial DNA
Morphology
Oxidative stress
Reactive oxygen species
Transmission electron microscopy
title Mitochondria-Targeted Antioxidant Mitoquinone Maintains Mitochondrial Homeostasis through the Sirt3-Dependent Pathway to Mitigate Oxidative Damage Caused by Renal Ischemia/Reperfusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondria-Targeted%20Antioxidant%20Mitoquinone%20Maintains%20Mitochondrial%20Homeostasis%20through%20the%20Sirt3-Dependent%20Pathway%20to%20Mitigate%20Oxidative%20Damage%20Caused%20by%20Renal%20Ischemia/Reperfusion&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Mao,%20Hu&rft.date=2022-09-20&rft.volume=2022&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2022/2213503&rft_dat=%3Cproquest_pubme%3E2721259033%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-72c6048ab7e17323fe03caf7065d63cf9e1f4a4feb29956d46c7058ae925a2dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720244335&rft_id=info:pmid/&rfr_iscdi=true