Loading…
Mitigating Bias in Radiology Machine Learning: 1. Data Handling
Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can b...
Saved in:
Published in: | Radiology. Artificial intelligence 2022-09, Vol.4 (5), p.e210290 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043 |
container_end_page | |
container_issue | 5 |
container_start_page | e210290 |
container_title | Radiology. Artificial intelligence |
container_volume | 4 |
creator | Rouzrokh, Pouria Khosravi, Bardia Faghani, Shahriar Moassefi, Mana Vera Garcia, Diana V Singh, Yashbir Zhang, Kuan Conte, Gian Marco Erickson, Bradley J |
description | Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation. This report presents 12 suboptimal practices during data handling of an ML study, explains how those practices can lead to biases, and describes what may be done to mitigate them. Authors employ an arbitrary and simplified framework that splits ML data handling into four steps: data collection, data investigation, data splitting, and feature engineering. Examples from the available research literature are provided. A Google Colaboratory Jupyter notebook includes code examples to demonstrate the suboptimal practices and steps to prevent them.
Data Handling, Bias, Machine Learning, Deep Learning, Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD) © RSNA, 2022. |
doi_str_mv | 10.1148/ryai.210290 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9533091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723156431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRbKk9eZccBUmd_UpTD4rWjwotguh5me5O2pU0qdlU6L83pbXUy8yw-_DO8DB2zqHHuUqvqzX6nuAgBnDE2iKRaZxwgOODucW6IXwBgOBKaQGnrCUTAUor1WZ3E1_7Gda-mEUPHkPki-gdnS_zcraOJmjnvqBoTFgVDXIT8V70iDVGIyxc3rycsZMM80DdXe-wz-enj-EoHr-9vA7vx7GVKa9jrhVCmkoBgoj3ndYECDJrqgXHVaYsJVqnXFiXKOTkiNABOpoKSEDJDrvd5i5X0wU5S0VdYW6WlV9gtTYlevP_p_BzMyt_zEBLCQPeBFzuAqrye0WhNgsfLOU5FlSughF9IblOlNygV1vUVmUIFWX7NRzMxrrZWDdb6w19cXjZnv1zLH8BXDR9Ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723156431</pqid></control><display><type>article</type><title>Mitigating Bias in Radiology Machine Learning: 1. Data Handling</title><source>PubMed Central</source><creator>Rouzrokh, Pouria ; Khosravi, Bardia ; Faghani, Shahriar ; Moassefi, Mana ; Vera Garcia, Diana V ; Singh, Yashbir ; Zhang, Kuan ; Conte, Gian Marco ; Erickson, Bradley J</creator><creatorcontrib>Rouzrokh, Pouria ; Khosravi, Bardia ; Faghani, Shahriar ; Moassefi, Mana ; Vera Garcia, Diana V ; Singh, Yashbir ; Zhang, Kuan ; Conte, Gian Marco ; Erickson, Bradley J</creatorcontrib><description>Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation. This report presents 12 suboptimal practices during data handling of an ML study, explains how those practices can lead to biases, and describes what may be done to mitigate them. Authors employ an arbitrary and simplified framework that splits ML data handling into four steps: data collection, data investigation, data splitting, and feature engineering. Examples from the available research literature are provided. A Google Colaboratory Jupyter notebook includes code examples to demonstrate the suboptimal practices and steps to prevent them.
Data Handling, Bias, Machine Learning, Deep Learning, Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD) © RSNA, 2022.</description><identifier>ISSN: 2638-6100</identifier><identifier>EISSN: 2638-6100</identifier><identifier>DOI: 10.1148/ryai.210290</identifier><identifier>PMID: 36204544</identifier><language>eng</language><publisher>United States: Radiological Society of North America</publisher><subject>Special Report</subject><ispartof>Radiology. Artificial intelligence, 2022-09, Vol.4 (5), p.e210290</ispartof><rights>2022 by the Radiological Society of North America, Inc.</rights><rights>2022 by the Radiological Society of North America, Inc. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043</citedby><cites>FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043</cites><orcidid>0000-0002-0520-3582 ; 0000-0003-4664-0751 ; 0000-0002-5848-7072 ; 0000-0001-5926-7517 ; 0000-0001-7926-6095 ; 0000-0002-8024-339X ; 0000-0003-1014-4975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533091/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533091/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36204544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouzrokh, Pouria</creatorcontrib><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Faghani, Shahriar</creatorcontrib><creatorcontrib>Moassefi, Mana</creatorcontrib><creatorcontrib>Vera Garcia, Diana V</creatorcontrib><creatorcontrib>Singh, Yashbir</creatorcontrib><creatorcontrib>Zhang, Kuan</creatorcontrib><creatorcontrib>Conte, Gian Marco</creatorcontrib><creatorcontrib>Erickson, Bradley J</creatorcontrib><title>Mitigating Bias in Radiology Machine Learning: 1. Data Handling</title><title>Radiology. Artificial intelligence</title><addtitle>Radiol Artif Intell</addtitle><description>Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation. This report presents 12 suboptimal practices during data handling of an ML study, explains how those practices can lead to biases, and describes what may be done to mitigate them. Authors employ an arbitrary and simplified framework that splits ML data handling into four steps: data collection, data investigation, data splitting, and feature engineering. Examples from the available research literature are provided. A Google Colaboratory Jupyter notebook includes code examples to demonstrate the suboptimal practices and steps to prevent them.
Data Handling, Bias, Machine Learning, Deep Learning, Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD) © RSNA, 2022.</description><subject>Special Report</subject><issn>2638-6100</issn><issn>2638-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkE1Lw0AQhhdRbKk9eZccBUmd_UpTD4rWjwotguh5me5O2pU0qdlU6L83pbXUy8yw-_DO8DB2zqHHuUqvqzX6nuAgBnDE2iKRaZxwgOODucW6IXwBgOBKaQGnrCUTAUor1WZ3E1_7Gda-mEUPHkPki-gdnS_zcraOJmjnvqBoTFgVDXIT8V70iDVGIyxc3rycsZMM80DdXe-wz-enj-EoHr-9vA7vx7GVKa9jrhVCmkoBgoj3ndYECDJrqgXHVaYsJVqnXFiXKOTkiNABOpoKSEDJDrvd5i5X0wU5S0VdYW6WlV9gtTYlevP_p_BzMyt_zEBLCQPeBFzuAqrye0WhNgsfLOU5FlSughF9IblOlNygV1vUVmUIFWX7NRzMxrrZWDdb6w19cXjZnv1zLH8BXDR9Ag</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rouzrokh, Pouria</creator><creator>Khosravi, Bardia</creator><creator>Faghani, Shahriar</creator><creator>Moassefi, Mana</creator><creator>Vera Garcia, Diana V</creator><creator>Singh, Yashbir</creator><creator>Zhang, Kuan</creator><creator>Conte, Gian Marco</creator><creator>Erickson, Bradley J</creator><general>Radiological Society of North America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0520-3582</orcidid><orcidid>https://orcid.org/0000-0003-4664-0751</orcidid><orcidid>https://orcid.org/0000-0002-5848-7072</orcidid><orcidid>https://orcid.org/0000-0001-5926-7517</orcidid><orcidid>https://orcid.org/0000-0001-7926-6095</orcidid><orcidid>https://orcid.org/0000-0002-8024-339X</orcidid><orcidid>https://orcid.org/0000-0003-1014-4975</orcidid></search><sort><creationdate>20220901</creationdate><title>Mitigating Bias in Radiology Machine Learning: 1. Data Handling</title><author>Rouzrokh, Pouria ; Khosravi, Bardia ; Faghani, Shahriar ; Moassefi, Mana ; Vera Garcia, Diana V ; Singh, Yashbir ; Zhang, Kuan ; Conte, Gian Marco ; Erickson, Bradley J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Special Report</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouzrokh, Pouria</creatorcontrib><creatorcontrib>Khosravi, Bardia</creatorcontrib><creatorcontrib>Faghani, Shahriar</creatorcontrib><creatorcontrib>Moassefi, Mana</creatorcontrib><creatorcontrib>Vera Garcia, Diana V</creatorcontrib><creatorcontrib>Singh, Yashbir</creatorcontrib><creatorcontrib>Zhang, Kuan</creatorcontrib><creatorcontrib>Conte, Gian Marco</creatorcontrib><creatorcontrib>Erickson, Bradley J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Radiology. Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouzrokh, Pouria</au><au>Khosravi, Bardia</au><au>Faghani, Shahriar</au><au>Moassefi, Mana</au><au>Vera Garcia, Diana V</au><au>Singh, Yashbir</au><au>Zhang, Kuan</au><au>Conte, Gian Marco</au><au>Erickson, Bradley J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Bias in Radiology Machine Learning: 1. Data Handling</atitle><jtitle>Radiology. Artificial intelligence</jtitle><addtitle>Radiol Artif Intell</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>4</volume><issue>5</issue><spage>e210290</spage><pages>e210290-</pages><issn>2638-6100</issn><eissn>2638-6100</eissn><abstract>Minimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation. This report presents 12 suboptimal practices during data handling of an ML study, explains how those practices can lead to biases, and describes what may be done to mitigate them. Authors employ an arbitrary and simplified framework that splits ML data handling into four steps: data collection, data investigation, data splitting, and feature engineering. Examples from the available research literature are provided. A Google Colaboratory Jupyter notebook includes code examples to demonstrate the suboptimal practices and steps to prevent them.
Data Handling, Bias, Machine Learning, Deep Learning, Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD) © RSNA, 2022.</abstract><cop>United States</cop><pub>Radiological Society of North America</pub><pmid>36204544</pmid><doi>10.1148/ryai.210290</doi><orcidid>https://orcid.org/0000-0002-0520-3582</orcidid><orcidid>https://orcid.org/0000-0003-4664-0751</orcidid><orcidid>https://orcid.org/0000-0002-5848-7072</orcidid><orcidid>https://orcid.org/0000-0001-5926-7517</orcidid><orcidid>https://orcid.org/0000-0001-7926-6095</orcidid><orcidid>https://orcid.org/0000-0002-8024-339X</orcidid><orcidid>https://orcid.org/0000-0003-1014-4975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2638-6100 |
ispartof | Radiology. Artificial intelligence, 2022-09, Vol.4 (5), p.e210290 |
issn | 2638-6100 2638-6100 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9533091 |
source | PubMed Central |
subjects | Special Report |
title | Mitigating Bias in Radiology Machine Learning: 1. Data Handling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Bias%20in%20Radiology%20Machine%20Learning:%201.%20Data%20Handling&rft.jtitle=Radiology.%20Artificial%20intelligence&rft.au=Rouzrokh,%20Pouria&rft.date=2022-09-01&rft.volume=4&rft.issue=5&rft.spage=e210290&rft.pages=e210290-&rft.issn=2638-6100&rft.eissn=2638-6100&rft_id=info:doi/10.1148/ryai.210290&rft_dat=%3Cproquest_pubme%3E2723156431%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-154a0883202ee17d55e0a03fe0ac0d14f4ce655812cd64a1edeead0adeb206043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723156431&rft_id=info:pmid/36204544&rfr_iscdi=true |