Loading…

Microfluidic nanodevices for drug sensing and screening applications

The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensi...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2023-01, Vol.219, p.114783, Article 114783
Main Authors: Pal, Arnab, Kaswan, Kuldeep, Barman, Snigdha Roy, Lin, Yu-Zih, Chung, Jun-Hsuan, Sharma, Manish Kumar, Liu, Kuei-Lin, Chen, Bo-Huan, Wu, Chih-Cheng, Lee, Sangmin, Choi, Dongwhi, Lin, Zong-Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development. •Comprehensive review of microfluidics-based drug sensing and screening.•Different microfluidics-based drug screening techniques are summarized.•The importance of different structural properties is summarized.•Applications in therapeutic and illicit drug screening are discussed.•Perspectives on future research directions are briefly illustrated.
ISSN:0956-5663
1873-4235
1873-4235
DOI:10.1016/j.bios.2022.114783