Loading…

A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning

Despite the emergence of various human-robot collaboration frameworks, most are not sufficiently flexible to adapt to users with different habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is proposed. It integrates reinforcement learning into hu...

Full description

Saved in:
Bibliographic Details
Published in:Computational intelligence and neuroscience 2022-09, Vol.2022, p.1-13
Main Authors: Cai, Zeyuan, Feng, Zhiquan, Zhou, Liran, Ai, Changsheng, Shao, Haiyan, Yang, Xiaohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c410t-af6e67fa4c5469595bd9b5e958aad1bf5543073cc6aabd207477682625403ace3
container_end_page 13
container_issue
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2022
creator Cai, Zeyuan
Feng, Zhiquan
Zhou, Liran
Ai, Changsheng
Shao, Haiyan
Yang, Xiaohui
description Despite the emergence of various human-robot collaboration frameworks, most are not sufficiently flexible to adapt to users with different habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is proposed. It integrates reinforcement learning into human-robot collaboration and continuously adapts to the user's habits in the process of collaboration with the user to achieve the effect of human-robot cointegration. With the user's multimodal features as states, the MRLC framework collects the user's speech through natural language processing and employs it to determine the reward of the actions made by the robot. Our experiments demonstrate that the MRLC framework can adapt to the user's habits after repeated learning and better understand the user's intention compared to traditional solutions.
doi_str_mv 10.1155/2022/2341898
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9534615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721691038</galeid><sourcerecordid>A721691038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-af6e67fa4c5469595bd9b5e958aad1bf5543073cc6aabd207477682625403ace3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhiMEEh_lxg-w1EslmuJvJxekZVVKpUWVUDlbE8fZNU1ssBNQ_30ddkXVHjh5JD_zzjvzFsUZwV8IEeKCYkovKOOkqqu94ojISpWCKrb_VktxWByn9ICxUALTo6JZoOsIg30J8RcC36JFvw7RjZsBdSGim2kAX96FJoxoGfoemhBhdMGjK0i2Rbm4nfrRDaGFHt1Z53OXsYP1I1pZiN759YfioIM-2dPde1LcX3_9ubwpVz--fV8uVqXhBI8ldNJK1QE3gsta1KJp60bYWlQALWk6ITjDihkjAZqWYsWVkhWVVHDMwFh2UlxudR-nZrCtyR4i9PoxugHibx3A6X9_vNvodXjWtWBcEpEFPu0EYniabBr14JKxeWtvw5Q0Vfm2FSesyujH_9CHMEWf15spWiuWff-l1tBbPd8mzzWzqF4oSmRN8KvW5y1lYkgp2u7NMsF6zlXPuepdrhk_3-Ib51t4ce_TfwDOWqHt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722973958</pqid></control><display><type>article</type><title>A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Cai, Zeyuan ; Feng, Zhiquan ; Zhou, Liran ; Ai, Changsheng ; Shao, Haiyan ; Yang, Xiaohui</creator><contributor>Hu, Zhongxu ; Zhongxu Hu</contributor><creatorcontrib>Cai, Zeyuan ; Feng, Zhiquan ; Zhou, Liran ; Ai, Changsheng ; Shao, Haiyan ; Yang, Xiaohui ; Hu, Zhongxu ; Zhongxu Hu</creatorcontrib><description>Despite the emergence of various human-robot collaboration frameworks, most are not sufficiently flexible to adapt to users with different habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is proposed. It integrates reinforcement learning into human-robot collaboration and continuously adapts to the user's habits in the process of collaboration with the user to achieve the effect of human-robot cointegration. With the user's multimodal features as states, the MRLC framework collects the user's speech through natural language processing and employs it to determine the reward of the actions made by the robot. Our experiments demonstrate that the MRLC framework can adapt to the user's habits after repeated learning and better understand the user's intention compared to traditional solutions.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/2341898</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Behavior ; Collaboration ; Computational linguistics ; Deep learning ; Habits ; Language processing ; Learning ; Machine learning ; Natural language interfaces ; Natural language processing ; Neural networks ; Reinforcement ; Robotics ; Robots</subject><ispartof>Computational intelligence and neuroscience, 2022-09, Vol.2022, p.1-13</ispartof><rights>Copyright © 2022 Zeyuan Cai et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Zeyuan Cai et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Zeyuan Cai et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c410t-af6e67fa4c5469595bd9b5e958aad1bf5543073cc6aabd207477682625403ace3</cites><orcidid>0000-0002-7704-4197 ; 0000-0001-9677-979X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2722973958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2722973958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><contributor>Hu, Zhongxu</contributor><contributor>Zhongxu Hu</contributor><creatorcontrib>Cai, Zeyuan</creatorcontrib><creatorcontrib>Feng, Zhiquan</creatorcontrib><creatorcontrib>Zhou, Liran</creatorcontrib><creatorcontrib>Ai, Changsheng</creatorcontrib><creatorcontrib>Shao, Haiyan</creatorcontrib><creatorcontrib>Yang, Xiaohui</creatorcontrib><title>A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning</title><title>Computational intelligence and neuroscience</title><description>Despite the emergence of various human-robot collaboration frameworks, most are not sufficiently flexible to adapt to users with different habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is proposed. It integrates reinforcement learning into human-robot collaboration and continuously adapts to the user's habits in the process of collaboration with the user to achieve the effect of human-robot cointegration. With the user's multimodal features as states, the MRLC framework collects the user's speech through natural language processing and employs it to determine the reward of the actions made by the robot. Our experiments demonstrate that the MRLC framework can adapt to the user's habits after repeated learning and better understand the user's intention compared to traditional solutions.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Collaboration</subject><subject>Computational linguistics</subject><subject>Deep learning</subject><subject>Habits</subject><subject>Language processing</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Reinforcement</subject><subject>Robotics</subject><subject>Robots</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1P3DAQhiMEEh_lxg-w1EslmuJvJxekZVVKpUWVUDlbE8fZNU1ssBNQ_30ddkXVHjh5JD_zzjvzFsUZwV8IEeKCYkovKOOkqqu94ojISpWCKrb_VktxWByn9ICxUALTo6JZoOsIg30J8RcC36JFvw7RjZsBdSGim2kAX96FJoxoGfoemhBhdMGjK0i2Rbm4nfrRDaGFHt1Z53OXsYP1I1pZiN759YfioIM-2dPde1LcX3_9ubwpVz--fV8uVqXhBI8ldNJK1QE3gsta1KJp60bYWlQALWk6ITjDihkjAZqWYsWVkhWVVHDMwFh2UlxudR-nZrCtyR4i9PoxugHibx3A6X9_vNvodXjWtWBcEpEFPu0EYniabBr14JKxeWtvw5Q0Vfm2FSesyujH_9CHMEWf15spWiuWff-l1tBbPd8mzzWzqF4oSmRN8KvW5y1lYkgp2u7NMsF6zlXPuepdrhk_3-Ib51t4ce_TfwDOWqHt</recordid><startdate>20220928</startdate><enddate>20220928</enddate><creator>Cai, Zeyuan</creator><creator>Feng, Zhiquan</creator><creator>Zhou, Liran</creator><creator>Ai, Changsheng</creator><creator>Shao, Haiyan</creator><creator>Yang, Xiaohui</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7704-4197</orcidid><orcidid>https://orcid.org/0000-0001-9677-979X</orcidid></search><sort><creationdate>20220928</creationdate><title>A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning</title><author>Cai, Zeyuan ; Feng, Zhiquan ; Zhou, Liran ; Ai, Changsheng ; Shao, Haiyan ; Yang, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-af6e67fa4c5469595bd9b5e958aad1bf5543073cc6aabd207477682625403ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Collaboration</topic><topic>Computational linguistics</topic><topic>Deep learning</topic><topic>Habits</topic><topic>Language processing</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Reinforcement</topic><topic>Robotics</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zeyuan</creatorcontrib><creatorcontrib>Feng, Zhiquan</creatorcontrib><creatorcontrib>Zhou, Liran</creatorcontrib><creatorcontrib>Ai, Changsheng</creatorcontrib><creatorcontrib>Shao, Haiyan</creatorcontrib><creatorcontrib>Yang, Xiaohui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zeyuan</au><au>Feng, Zhiquan</au><au>Zhou, Liran</au><au>Ai, Changsheng</au><au>Shao, Haiyan</au><au>Yang, Xiaohui</au><au>Hu, Zhongxu</au><au>Zhongxu Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-09-28</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Despite the emergence of various human-robot collaboration frameworks, most are not sufficiently flexible to adapt to users with different habits. In this article, a Multimodal Reinforcement Learning Human-Robot Collaboration (MRLC) framework is proposed. It integrates reinforcement learning into human-robot collaboration and continuously adapts to the user's habits in the process of collaboration with the user to achieve the effect of human-robot cointegration. With the user's multimodal features as states, the MRLC framework collects the user's speech through natural language processing and employs it to determine the reward of the actions made by the robot. Our experiments demonstrate that the MRLC framework can adapt to the user's habits after repeated learning and better understand the user's intention compared to traditional solutions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2341898</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7704-4197</orcidid><orcidid>https://orcid.org/0000-0001-9677-979X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-09, Vol.2022, p.1-13
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9534615
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Algorithms
Behavior
Collaboration
Computational linguistics
Deep learning
Habits
Language processing
Learning
Machine learning
Natural language interfaces
Natural language processing
Neural networks
Reinforcement
Robotics
Robots
title A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20and%20Algorithm%20for%20Human-Robot%20Collaboration%20Based%20on%20Multimodal%20Reinforcement%20Learning&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Cai,%20Zeyuan&rft.date=2022-09-28&rft.volume=2022&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/2341898&rft_dat=%3Cgale_pubme%3EA721691038%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-af6e67fa4c5469595bd9b5e958aad1bf5543073cc6aabd207477682625403ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722973958&rft_id=info:pmid/&rft_galeid=A721691038&rfr_iscdi=true