Loading…
LncRNA-Smad7 mediates cross-talk between Nodal/TGF-β and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells
Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmenta...
Saved in:
Published in: | Nucleic acids research 2022-10, Vol.50 (18), p.10526-10543 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-β and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gkac780 |