Loading…
Solid-State Chemical Recycling of Polycarbonates to Epoxides and Carbon Dioxide Using a Heterodinuclear Mg(II)Co(II) Catalyst
Polymer chemical recycling to monomers (CRM) could help improve polymer sustainability, but its implementation requires much better understanding of depolymerization catalysis, ensuring high rates and selectivity. Here, a heterodinuclear [Mg(II)Co(II)] catalyst is applied for CRM of aliphatic pol...
Saved in:
Published in: | Journal of the American Chemical Society 2022-10, Vol.144 (40), p.18444-18449 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymer chemical recycling to monomers (CRM) could help improve polymer sustainability, but its implementation requires much better understanding of depolymerization catalysis, ensuring high rates and selectivity. Here, a heterodinuclear [Mg(II)Co(II)] catalyst is applied for CRM of aliphatic polycarbonates, including poly(cyclohexene carbonate) (PCHC), to epoxides and carbon dioxide using solid-state conditions, in contrast with many other CRM strategies that rely on high dilution. The depolymerizations are performed in the solid state giving very high activity and selectivity (PCHC, TOF = 25700 h–1, CHO selectivity >99 %, 0.02 mol %, 140 °C). Reactions may also be performed in air without impacting on the rate or selectivity of epoxide formation. The depolymerization can be performed on a 2 g scale to isolate the epoxides in up to 95 % yield with >99 % selectivity. In addition, the catalyst can be re-used four times without compromising its productivity or selectivity. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c06937 |