Loading…

Embryonic specializations for vertebrate placentation

The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2022-12, Vol.377 (1865), p.20210261
Main Authors: Whittington, Camilla M, Buddle, Alice L, Griffith, Oliver W, Carter, Anthony M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vertebrate placenta, a close association of fetal and parental tissue for physiological exchange, has evolved independently in sharks, teleost fishes, coelacanths, amphibians, squamate reptiles and mammals. This transient organ forms during pregnancy and is an important contributor to embryonic development in both viviparous and oviparous, brooding species. Placentae may be involved in transport of respiratory gases, wastes, immune molecules, hormones and nutrients. Depending on the taxon, the embryonic portion of the placenta is comprised of either extraembryonic membranes (yolk sac or chorioallantois) or temporary embryonic tissues derived via hypertrophy of pericardium, gill epithelium, gut, tails or fins. These membranes and tissues have been recruited convergently into placentae in several lineages. Here, we highlight the diversity and common features of embryonic tissues involved in vertebrate placentation and suggest future studies that will provide new knowledge about the evolution of pregnancy. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
ISSN:0962-8436
1471-2970
1471-2970
DOI:10.1098/rstb.2021.0261