Loading…
The ixabepilone and vandetanib combination shows synergistic activity in docetaxel-resistant MDA-MB-231 breast cancer cells
Background The lack of drug targets is an obstacle to the treatment of patients with triple-negative breast cancer (TNBC). At present, non-specific cytotoxic drugs are first-line agents, but the development of resistance is a major problem with these agents. The epidermal growth factor receptor (EGF...
Saved in:
Published in: | Pharmacological reports 2022-10, Vol.74 (5), p.998-1010 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
The lack of drug targets is an obstacle to the treatment of patients with triple-negative breast cancer (TNBC). At present, non-specific cytotoxic drugs are first-line agents, but the development of resistance is a major problem with these agents. The epidermal growth factor receptor (EGFR) is a potential target in some TNBCs, because its tyrosine kinase activity drives tumorigenesis. Thus, small molecule inhibitors of the EGFR in combination with cytotoxic agents could be important for the treatment of TNBCs.
Methods
The present study evaluated the efficacies of clinically approved EGFR inhibitors in combination with the cytotoxic agent ixabepilone in parental and docetaxel-resistant MDA-MB-231 cells (231C and TXT cells, respectively). Cell viability was assessed using MTT reduction assays, cell death pathways were evaluated using annexin V/7-aminoactinomycin D staining and flow cytometry and Western immunoblotting was used to assess the expression of pro- and anti-apoptotic proteins in cells.
Results
Ixabepilone and the EGFR inhibitors gefitinib and vandetanib inhibited 231C and TXT cell proliferation, but the alternate EGFR inhibitors erlotinib and lapatinib were poorly active. Using combination analysis, ixabepilone/vandetanib was synergistic in both cell types, whereas the ixabepilone/gefitinib combination exhibited antagonism. By flow cytometry, ixabepilone/vandetanib enhanced 231C and TXT cell death over that produced by the single agents and also enhanced caspase-3 cleavage and the pro/anti-apoptotic Bcl-2 protein ratios over ixabepilone alone.
Conclusions
These findings suggest that the ixabepilone/vandetanib combination may have promise for the treatment of patients with drug-resistant TNBC.
Graphical abstract |
---|---|
ISSN: | 1734-1140 2299-5684 |
DOI: | 10.1007/s43440-022-00396-7 |