Loading…
Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model
Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention stra...
Saved in:
Published in: | International journal of environmental research and public health 2022-10, Vol.19 (20), p.13491 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793 |
container_end_page | |
container_issue | 20 |
container_start_page | 13491 |
container_title | International journal of environmental research and public health |
container_volume | 19 |
creator | Tam, Andy Yiu-Chau Zha, Li-Wen So, Bryan Pak-Hei Lai, Derek Ka-Hei Mao, Ye-Jiao Lim, Hyo-Jung Wong, Duo Wai-Chi Cheung, James Chung-Wai |
description | Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention strategy. The system used an integrated visible light and depth camera. Deep learning models (ResNet-34, EfficientNet B4, and ECA-Net50) were trained using depth images. We compared the models with and without an anatomical landmark coordinate input generated with an open-source pose estimation model using visible image data. We recruited 120 participants to perform seven major sleep postures, namely, the supine posture, prone postures with the head turned left and right, left- and right-sided log postures, and left- and right-sided fetal postures under four blanket conditions, including no blanket, thin, medium, and thick. A data augmentation technique was applied to the blanket conditions. The data were sliced at an 8:2 training-to-testing ratio. The results showed that ECA-Net50 produced the best classification results. Incorporating the anatomical landmark features increased the F1 score of ECA-Net50 from 87.4% to 92.2%. Our findings also suggested that the classification performances of deep learning models guided with features of anatomical landmarks were less affected by the interference of blanket conditions. |
doi_str_mv | 10.3390/ijerph192013491 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9603239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729526588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qCChw7q2K1EsvKf5InPhSCRZKkRaBRPdszdoT1ktip3aCxL8nERQBpxnNPPNqZl5CvjL6UwhFj90WY79hilMmCsU-kX0mJc0LSdnnN_ke-ZLSllJRF1Ltkj0huSpoxfdJPMN-2OQL6DBCfgoJbbbyFmN-2oK_xyG7bRH77CakYYyYLVpIyTXOwOCCz1bJ-bvsxMMQuqnWZkvwtoN4n1-Mzk5aZ_PwEiH6GbwKFttDstNAm_DoJR6Q1e_zv4s_-fL64nJxssxNwdmQi4qB5UYwYdcVGsVkASjWoqxNZSRrmrJAablkqoZSMstKWRpWywokNFWlxAH59azbj-sOrUE_RGh1H9204KMO4PT7jncbfRcetJJUcDEL_HgRiOHfiGnQnUsG2-kxGMakecVVyWVZ1xP6_QO6DWP003kzVRc1V4xP1PEzZWJIKWLzugyjevZTf_Bzmvj29oZX_r-B4gmanZ12</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728482912</pqid></control><display><type>article</type><title>Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Tam, Andy Yiu-Chau ; Zha, Li-Wen ; So, Bryan Pak-Hei ; Lai, Derek Ka-Hei ; Mao, Ye-Jiao ; Lim, Hyo-Jung ; Wong, Duo Wai-Chi ; Cheung, James Chung-Wai</creator><creatorcontrib>Tam, Andy Yiu-Chau ; Zha, Li-Wen ; So, Bryan Pak-Hei ; Lai, Derek Ka-Hei ; Mao, Ye-Jiao ; Lim, Hyo-Jung ; Wong, Duo Wai-Chi ; Cheung, James Chung-Wai</creatorcontrib><description>Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention strategy. The system used an integrated visible light and depth camera. Deep learning models (ResNet-34, EfficientNet B4, and ECA-Net50) were trained using depth images. We compared the models with and without an anatomical landmark coordinate input generated with an open-source pose estimation model using visible image data. We recruited 120 participants to perform seven major sleep postures, namely, the supine posture, prone postures with the head turned left and right, left- and right-sided log postures, and left- and right-sided fetal postures under four blanket conditions, including no blanket, thin, medium, and thick. A data augmentation technique was applied to the blanket conditions. The data were sliced at an 8:2 training-to-testing ratio. The results showed that ECA-Net50 produced the best classification results. Incorporating the anatomical landmark features increased the F1 score of ECA-Net50 from 87.4% to 92.2%. Our findings also suggested that the classification performances of deep learning models guided with features of anatomical landmarks were less affected by the interference of blanket conditions.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph192013491</identifier><identifier>PMID: 36294072</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Cameras ; Classification ; Data collection ; Deep Learning ; Experiments ; Fetuses ; Humans ; Neural networks ; Physiology ; Pose estimation ; Posture ; Sensors ; Sleep ; Sleep deprivation ; Sleep disorders ; Sleep Wake Disorders ; Support vector machines</subject><ispartof>International journal of environmental research and public health, 2022-10, Vol.19 (20), p.13491</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793</citedby><cites>FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793</cites><orcidid>0000-0003-2239-3303 ; 0000-0001-7446-0569 ; 0000-0002-8805-1157 ; 0000-0001-6563-8177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2728482912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2728482912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36294072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tam, Andy Yiu-Chau</creatorcontrib><creatorcontrib>Zha, Li-Wen</creatorcontrib><creatorcontrib>So, Bryan Pak-Hei</creatorcontrib><creatorcontrib>Lai, Derek Ka-Hei</creatorcontrib><creatorcontrib>Mao, Ye-Jiao</creatorcontrib><creatorcontrib>Lim, Hyo-Jung</creatorcontrib><creatorcontrib>Wong, Duo Wai-Chi</creatorcontrib><creatorcontrib>Cheung, James Chung-Wai</creatorcontrib><title>Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention strategy. The system used an integrated visible light and depth camera. Deep learning models (ResNet-34, EfficientNet B4, and ECA-Net50) were trained using depth images. We compared the models with and without an anatomical landmark coordinate input generated with an open-source pose estimation model using visible image data. We recruited 120 participants to perform seven major sleep postures, namely, the supine posture, prone postures with the head turned left and right, left- and right-sided log postures, and left- and right-sided fetal postures under four blanket conditions, including no blanket, thin, medium, and thick. A data augmentation technique was applied to the blanket conditions. The data were sliced at an 8:2 training-to-testing ratio. The results showed that ECA-Net50 produced the best classification results. Incorporating the anatomical landmark features increased the F1 score of ECA-Net50 from 87.4% to 92.2%. Our findings also suggested that the classification performances of deep learning models guided with features of anatomical landmarks were less affected by the interference of blanket conditions.</description><subject>Accuracy</subject><subject>Cameras</subject><subject>Classification</subject><subject>Data collection</subject><subject>Deep Learning</subject><subject>Experiments</subject><subject>Fetuses</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Physiology</subject><subject>Pose estimation</subject><subject>Posture</subject><subject>Sensors</subject><subject>Sleep</subject><subject>Sleep deprivation</subject><subject>Sleep disorders</subject><subject>Sleep Wake Disorders</subject><subject>Support vector machines</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1P3DAQhq2qCChw7q2K1EsvKf5InPhSCRZKkRaBRPdszdoT1ktip3aCxL8nERQBpxnNPPNqZl5CvjL6UwhFj90WY79hilMmCsU-kX0mJc0LSdnnN_ke-ZLSllJRF1Ltkj0huSpoxfdJPMN-2OQL6DBCfgoJbbbyFmN-2oK_xyG7bRH77CakYYyYLVpIyTXOwOCCz1bJ-bvsxMMQuqnWZkvwtoN4n1-Mzk5aZ_PwEiH6GbwKFttDstNAm_DoJR6Q1e_zv4s_-fL64nJxssxNwdmQi4qB5UYwYdcVGsVkASjWoqxNZSRrmrJAablkqoZSMstKWRpWywokNFWlxAH59azbj-sOrUE_RGh1H9204KMO4PT7jncbfRcetJJUcDEL_HgRiOHfiGnQnUsG2-kxGMakecVVyWVZ1xP6_QO6DWP003kzVRc1V4xP1PEzZWJIKWLzugyjevZTf_Bzmvj29oZX_r-B4gmanZ12</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Tam, Andy Yiu-Chau</creator><creator>Zha, Li-Wen</creator><creator>So, Bryan Pak-Hei</creator><creator>Lai, Derek Ka-Hei</creator><creator>Mao, Ye-Jiao</creator><creator>Lim, Hyo-Jung</creator><creator>Wong, Duo Wai-Chi</creator><creator>Cheung, James Chung-Wai</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2239-3303</orcidid><orcidid>https://orcid.org/0000-0001-7446-0569</orcidid><orcidid>https://orcid.org/0000-0002-8805-1157</orcidid><orcidid>https://orcid.org/0000-0001-6563-8177</orcidid></search><sort><creationdate>20221018</creationdate><title>Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model</title><author>Tam, Andy Yiu-Chau ; Zha, Li-Wen ; So, Bryan Pak-Hei ; Lai, Derek Ka-Hei ; Mao, Ye-Jiao ; Lim, Hyo-Jung ; Wong, Duo Wai-Chi ; Cheung, James Chung-Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Cameras</topic><topic>Classification</topic><topic>Data collection</topic><topic>Deep Learning</topic><topic>Experiments</topic><topic>Fetuses</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Physiology</topic><topic>Pose estimation</topic><topic>Posture</topic><topic>Sensors</topic><topic>Sleep</topic><topic>Sleep deprivation</topic><topic>Sleep disorders</topic><topic>Sleep Wake Disorders</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam, Andy Yiu-Chau</creatorcontrib><creatorcontrib>Zha, Li-Wen</creatorcontrib><creatorcontrib>So, Bryan Pak-Hei</creatorcontrib><creatorcontrib>Lai, Derek Ka-Hei</creatorcontrib><creatorcontrib>Mao, Ye-Jiao</creatorcontrib><creatorcontrib>Lim, Hyo-Jung</creatorcontrib><creatorcontrib>Wong, Duo Wai-Chi</creatorcontrib><creatorcontrib>Cheung, James Chung-Wai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam, Andy Yiu-Chau</au><au>Zha, Li-Wen</au><au>So, Bryan Pak-Hei</au><au>Lai, Derek Ka-Hei</au><au>Mao, Ye-Jiao</au><au>Lim, Hyo-Jung</au><au>Wong, Duo Wai-Chi</au><au>Cheung, James Chung-Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-10-18</date><risdate>2022</risdate><volume>19</volume><issue>20</issue><spage>13491</spage><pages>13491-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Emerging sleep health technologies will have an impact on monitoring patients with sleep disorders. This study proposes a new deep learning model architecture that improves the under-blanket sleep posture classification accuracy by leveraging the anatomical landmark feature through an attention strategy. The system used an integrated visible light and depth camera. Deep learning models (ResNet-34, EfficientNet B4, and ECA-Net50) were trained using depth images. We compared the models with and without an anatomical landmark coordinate input generated with an open-source pose estimation model using visible image data. We recruited 120 participants to perform seven major sleep postures, namely, the supine posture, prone postures with the head turned left and right, left- and right-sided log postures, and left- and right-sided fetal postures under four blanket conditions, including no blanket, thin, medium, and thick. A data augmentation technique was applied to the blanket conditions. The data were sliced at an 8:2 training-to-testing ratio. The results showed that ECA-Net50 produced the best classification results. Incorporating the anatomical landmark features increased the F1 score of ECA-Net50 from 87.4% to 92.2%. Our findings also suggested that the classification performances of deep learning models guided with features of anatomical landmarks were less affected by the interference of blanket conditions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36294072</pmid><doi>10.3390/ijerph192013491</doi><orcidid>https://orcid.org/0000-0003-2239-3303</orcidid><orcidid>https://orcid.org/0000-0001-7446-0569</orcidid><orcidid>https://orcid.org/0000-0002-8805-1157</orcidid><orcidid>https://orcid.org/0000-0001-6563-8177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2022-10, Vol.19 (20), p.13491 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9603239 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access) |
subjects | Accuracy Cameras Classification Data collection Deep Learning Experiments Fetuses Humans Neural networks Physiology Pose estimation Posture Sensors Sleep Sleep deprivation Sleep disorders Sleep Wake Disorders Support vector machines |
title | Depth-Camera-Based Under-Blanket Sleep Posture Classification Using Anatomical Landmark-Guided Deep Learning Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-Camera-Based%20Under-Blanket%20Sleep%20Posture%20Classification%20Using%20Anatomical%20Landmark-Guided%20Deep%20Learning%20Model&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Tam,%20Andy%20Yiu-Chau&rft.date=2022-10-18&rft.volume=19&rft.issue=20&rft.spage=13491&rft.pages=13491-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph192013491&rft_dat=%3Cproquest_pubme%3E2729526588%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-371ad2c313db7ec9164ae3b358c7c61ff54e6d26198a561d1565c1867a6af7793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728482912&rft_id=info:pmid/36294072&rfr_iscdi=true |