Loading…

Toxicokinetic Modeling of the Transfer of Non-Dioxin-like Polychlorinated Biphenyls (ndl-PCBs) from Feed and Soil into Laying Hens and Their Eggs

Non-dioxin-like polychlorinated biphenyls (ndl-PCBs) are a subclass of persistent bioaccumulative pollutants able to enter the food chain. Toxicokinetic models for the transfer of the six ndl-PCB congeners (PCBs 28, 52, 101, 138, 153, and 180) from contaminated feed and soil into chicken eggs and me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2022-10, Vol.70 (42), p.13754-13764
Main Authors: Savvateeva, Daria, Ohlhoff, Britta, Hoogenboom, Ron L. A. P., Pieper, Robert, Numata, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-dioxin-like polychlorinated biphenyls (ndl-PCBs) are a subclass of persistent bioaccumulative pollutants able to enter the food chain. Toxicokinetic models for the transfer of the six ndl-PCB congeners (PCBs 28, 52, 101, 138, 153, and 180) from contaminated feed and soil into chicken eggs and meat are presented. Three independent controlled feeding study datasets were used to estimate the model parameters and four studies for evaluating the model performance. The yolk deposition of ndl-PCBs is modeled in a novel way that mimics the physiology of yolk growth and development, resulting in improved prediction of the experimental data without introducing an ad hoc time delay between ovulation and oviposition. Using the models, the highest level of 2.4 μg/kg dry matter (DM) was calculated for the sum of ndl-PCBs in laying hen feed to ensure that the current maximum levels in meat and eggs (40 ng/g fat) will not be exceeded. It is also shown how this highest level in feed should be adapted in case soil, in addition to feed, is also a source of ndl-PCBs for free-range chickens.
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/acs.jafc.2c04396