Loading…

Molecular Characterization of 14-3-3 Zeta Gene in Musca domestica (Diptera: Muscidae) and Its Roles in Response to Bacterial Infection

The 14-3-3 gene plays important role in many biological processes, including cell survival, apoptosis, and signal transduction. However, function of the 14-3-3 homologous gene in Musca domestica remains unclear. Here, we identified and characterized the 14-3-3ζ of M. domestica. We found that Md14-3-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of insect science (Tucson, Ariz.) Ariz.), 2022-09, Vol.22 (5)
Main Authors: Jiao, Zhenlong, Yang, Yujin, Xiu, Jiangfan, Shang, Xiaoli, Peng, Jian, Guo, Guo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 14-3-3 gene plays important role in many biological processes, including cell survival, apoptosis, and signal transduction. However, function of the 14-3-3 homologous gene in Musca domestica remains unclear. Here, we identified and characterized the 14-3-3ζ of M. domestica. We found that Md14-3-3ζ gene was highly homologous with other close insects. The qRT–PCR analysis revealed that the Md14-3-3ζ was highly expressed in adults, and was expressed predominantly in hemocytes and fat body. Meanwhile, the expression of Md14-3-3ζ was up-regulated after injecting Escherichia coli and Staphylococcus aureus. Moreover, the recombinant protein rMd14-3-3ζ strongly inhibits the growth of E. coli and S. aureus. Notably, the rMd14-3-3ζ inhibits E. coli and S. aureus by permeating the cell membrane. Taken together, our findings suggested that Md14-3-3ζ is involved in the immune response against bacteria through damaging the cell membrane.
ISSN:1536-2442
1536-2442
DOI:10.1093/jisesa/ieac061