Loading…

Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices

High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2022-10, Vol.5 (10), p.15847-15854
Main Authors: Berenschot, Erwin, Tiggelaar, Roald M., Borgelink, Bjorn, van Kampen, Chris, Deenen, Cristian S., Pordeli, Yasser, Witteveen, Haye, Gardeniers, Han J. G. E., Tas, Niels R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53
cites cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53
container_end_page 15854
container_issue 10
container_start_page 15847
container_title ACS applied nano materials
container_volume 5
creator Berenschot, Erwin
Tiggelaar, Roald M.
Borgelink, Bjorn
van Kampen, Chris
Deenen, Cristian S.
Pordeli, Yasser
Witteveen, Haye
Gardeniers, Han J. G. E.
Tas, Niels R.
description High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.
doi_str_mv 10.1021/acsanm.2c04079
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733206046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</originalsourceid><addsrcrecordid>eNp1UU1rGzEQXUoDNUmuPe-xBNYZfayUvQSM3SSFtD04pUcxlrRrBVlypd0E__usaxPcQ08zvHkfMK8oPhOYEqDkGnXGsJlSDRxk86GY0FryChoJH0_2T8Vlzs8AQBoiGMCkeF1a31Yz77pgTTlPu9yj97FLuF07XX4ffO-23mnsXQxlbMsfGGLW6G25dCM-gr-t6Wwu25jKB9etq4UN2fW78g5X6UTIFn-1xr44bfNFcdaiz_byOM-LX3dfn-YP1ePP-2_z2WOFHGhfaYlIwdSEMmyF4MLcrAhZ2ZbdGAkMCRLdGC6EIXXDGOWSSyMFCKYZMlOz8-L24LsdVhtrtA19Qq-2yW0w7VREp_69BLdWXXxRjaCs5nuDL0eDFP8MNvdq47K23mOwcciKyjEWBHAxUqcHqk4x52Tb9xgCat-SOrSkji2NgquDYMTVcxxSGF_xP_Ib7BGWdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733206046</pqid></control><display><type>article</type><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</creator><creatorcontrib>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</creatorcontrib><description>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.2c04079</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2022-10, Vol.5 (10), p.15847-15854</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</citedby><cites>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</cites><orcidid>0000-0001-5731-1481 ; 0000-0002-4021-5036 ; 0000-0003-0581-2668 ; 0000-0001-7541-4345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Berenschot, Erwin</creatorcontrib><creatorcontrib>Tiggelaar, Roald M.</creatorcontrib><creatorcontrib>Borgelink, Bjorn</creatorcontrib><creatorcontrib>van Kampen, Chris</creatorcontrib><creatorcontrib>Deenen, Cristian S.</creatorcontrib><creatorcontrib>Pordeli, Yasser</creatorcontrib><creatorcontrib>Witteveen, Haye</creatorcontrib><creatorcontrib>Gardeniers, Han J. G. E.</creatorcontrib><creatorcontrib>Tas, Niels R.</creatorcontrib><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UU1rGzEQXUoDNUmuPe-xBNYZfayUvQSM3SSFtD04pUcxlrRrBVlypd0E__usaxPcQ08zvHkfMK8oPhOYEqDkGnXGsJlSDRxk86GY0FryChoJH0_2T8Vlzs8AQBoiGMCkeF1a31Yz77pgTTlPu9yj97FLuF07XX4ffO-23mnsXQxlbMsfGGLW6G25dCM-gr-t6Wwu25jKB9etq4UN2fW78g5X6UTIFn-1xr44bfNFcdaiz_byOM-LX3dfn-YP1ePP-2_z2WOFHGhfaYlIwdSEMmyF4MLcrAhZ2ZbdGAkMCRLdGC6EIXXDGOWSSyMFCKYZMlOz8-L24LsdVhtrtA19Qq-2yW0w7VREp_69BLdWXXxRjaCs5nuDL0eDFP8MNvdq47K23mOwcciKyjEWBHAxUqcHqk4x52Tb9xgCat-SOrSkji2NgquDYMTVcxxSGF_xP_Ib7BGWdQ</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Berenschot, Erwin</creator><creator>Tiggelaar, Roald M.</creator><creator>Borgelink, Bjorn</creator><creator>van Kampen, Chris</creator><creator>Deenen, Cristian S.</creator><creator>Pordeli, Yasser</creator><creator>Witteveen, Haye</creator><creator>Gardeniers, Han J. G. E.</creator><creator>Tas, Niels R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5731-1481</orcidid><orcidid>https://orcid.org/0000-0002-4021-5036</orcidid><orcidid>https://orcid.org/0000-0003-0581-2668</orcidid><orcidid>https://orcid.org/0000-0001-7541-4345</orcidid></search><sort><creationdate>20221028</creationdate><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><author>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenschot, Erwin</creatorcontrib><creatorcontrib>Tiggelaar, Roald M.</creatorcontrib><creatorcontrib>Borgelink, Bjorn</creatorcontrib><creatorcontrib>van Kampen, Chris</creatorcontrib><creatorcontrib>Deenen, Cristian S.</creatorcontrib><creatorcontrib>Pordeli, Yasser</creatorcontrib><creatorcontrib>Witteveen, Haye</creatorcontrib><creatorcontrib>Gardeniers, Han J. G. E.</creatorcontrib><creatorcontrib>Tas, Niels R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenschot, Erwin</au><au>Tiggelaar, Roald M.</au><au>Borgelink, Bjorn</au><au>van Kampen, Chris</au><au>Deenen, Cristian S.</au><au>Pordeli, Yasser</au><au>Witteveen, Haye</au><au>Gardeniers, Han J. G. E.</au><au>Tas, Niels R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>15847</spage><epage>15854</epage><pages>15847-15854</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.2c04079</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5731-1481</orcidid><orcidid>https://orcid.org/0000-0002-4021-5036</orcidid><orcidid>https://orcid.org/0000-0003-0581-2668</orcidid><orcidid>https://orcid.org/0000-0001-7541-4345</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2022-10, Vol.5 (10), p.15847-15854
issn 2574-0970
2574-0970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623545
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Aligned%20Crystallographic%20Multiplication%20of%20Nanoscale%20Silicon%20Wedges%20for%20High-Density%20Fabrication%20of%203D%20Nanodevices&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Berenschot,%20Erwin&rft.date=2022-10-28&rft.volume=5&rft.issue=10&rft.spage=15847&rft.epage=15854&rft.pages=15847-15854&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.2c04079&rft_dat=%3Cproquest_pubme%3E2733206046%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733206046&rft_id=info:pmid/&rfr_iscdi=true