Loading…
Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices
High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm...
Saved in:
Published in: | ACS applied nano materials 2022-10, Vol.5 (10), p.15847-15854 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53 |
---|---|
cites | cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53 |
container_end_page | 15854 |
container_issue | 10 |
container_start_page | 15847 |
container_title | ACS applied nano materials |
container_volume | 5 |
creator | Berenschot, Erwin Tiggelaar, Roald M. Borgelink, Bjorn van Kampen, Chris Deenen, Cristian S. Pordeli, Yasser Witteveen, Haye Gardeniers, Han J. G. E. Tas, Niels R. |
description | High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range. |
doi_str_mv | 10.1021/acsanm.2c04079 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733206046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</originalsourceid><addsrcrecordid>eNp1UU1rGzEQXUoDNUmuPe-xBNYZfayUvQSM3SSFtD04pUcxlrRrBVlypd0E__usaxPcQ08zvHkfMK8oPhOYEqDkGnXGsJlSDRxk86GY0FryChoJH0_2T8Vlzs8AQBoiGMCkeF1a31Yz77pgTTlPu9yj97FLuF07XX4ffO-23mnsXQxlbMsfGGLW6G25dCM-gr-t6Wwu25jKB9etq4UN2fW78g5X6UTIFn-1xr44bfNFcdaiz_byOM-LX3dfn-YP1ePP-2_z2WOFHGhfaYlIwdSEMmyF4MLcrAhZ2ZbdGAkMCRLdGC6EIXXDGOWSSyMFCKYZMlOz8-L24LsdVhtrtA19Qq-2yW0w7VREp_69BLdWXXxRjaCs5nuDL0eDFP8MNvdq47K23mOwcciKyjEWBHAxUqcHqk4x52Tb9xgCat-SOrSkji2NgquDYMTVcxxSGF_xP_Ib7BGWdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733206046</pqid></control><display><type>article</type><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</creator><creatorcontrib>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</creatorcontrib><description>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.2c04079</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2022-10, Vol.5 (10), p.15847-15854</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</citedby><cites>FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</cites><orcidid>0000-0001-5731-1481 ; 0000-0002-4021-5036 ; 0000-0003-0581-2668 ; 0000-0001-7541-4345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Berenschot, Erwin</creatorcontrib><creatorcontrib>Tiggelaar, Roald M.</creatorcontrib><creatorcontrib>Borgelink, Bjorn</creatorcontrib><creatorcontrib>van Kampen, Chris</creatorcontrib><creatorcontrib>Deenen, Cristian S.</creatorcontrib><creatorcontrib>Pordeli, Yasser</creatorcontrib><creatorcontrib>Witteveen, Haye</creatorcontrib><creatorcontrib>Gardeniers, Han J. G. E.</creatorcontrib><creatorcontrib>Tas, Niels R.</creatorcontrib><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UU1rGzEQXUoDNUmuPe-xBNYZfayUvQSM3SSFtD04pUcxlrRrBVlypd0E__usaxPcQ08zvHkfMK8oPhOYEqDkGnXGsJlSDRxk86GY0FryChoJH0_2T8Vlzs8AQBoiGMCkeF1a31Yz77pgTTlPu9yj97FLuF07XX4ffO-23mnsXQxlbMsfGGLW6G25dCM-gr-t6Wwu25jKB9etq4UN2fW78g5X6UTIFn-1xr44bfNFcdaiz_byOM-LX3dfn-YP1ePP-2_z2WOFHGhfaYlIwdSEMmyF4MLcrAhZ2ZbdGAkMCRLdGC6EIXXDGOWSSyMFCKYZMlOz8-L24LsdVhtrtA19Qq-2yW0w7VREp_69BLdWXXxRjaCs5nuDL0eDFP8MNvdq47K23mOwcciKyjEWBHAxUqcHqk4x52Tb9xgCat-SOrSkji2NgquDYMTVcxxSGF_xP_Ib7BGWdQ</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>Berenschot, Erwin</creator><creator>Tiggelaar, Roald M.</creator><creator>Borgelink, Bjorn</creator><creator>van Kampen, Chris</creator><creator>Deenen, Cristian S.</creator><creator>Pordeli, Yasser</creator><creator>Witteveen, Haye</creator><creator>Gardeniers, Han J. G. E.</creator><creator>Tas, Niels R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5731-1481</orcidid><orcidid>https://orcid.org/0000-0002-4021-5036</orcidid><orcidid>https://orcid.org/0000-0003-0581-2668</orcidid><orcidid>https://orcid.org/0000-0001-7541-4345</orcidid></search><sort><creationdate>20221028</creationdate><title>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</title><author>Berenschot, Erwin ; Tiggelaar, Roald M. ; Borgelink, Bjorn ; van Kampen, Chris ; Deenen, Cristian S. ; Pordeli, Yasser ; Witteveen, Haye ; Gardeniers, Han J. G. E. ; Tas, Niels R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berenschot, Erwin</creatorcontrib><creatorcontrib>Tiggelaar, Roald M.</creatorcontrib><creatorcontrib>Borgelink, Bjorn</creatorcontrib><creatorcontrib>van Kampen, Chris</creatorcontrib><creatorcontrib>Deenen, Cristian S.</creatorcontrib><creatorcontrib>Pordeli, Yasser</creatorcontrib><creatorcontrib>Witteveen, Haye</creatorcontrib><creatorcontrib>Gardeniers, Han J. G. E.</creatorcontrib><creatorcontrib>Tas, Niels R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berenschot, Erwin</au><au>Tiggelaar, Roald M.</au><au>Borgelink, Bjorn</au><au>van Kampen, Chris</au><au>Deenen, Cristian S.</au><au>Pordeli, Yasser</au><au>Witteveen, Haye</au><au>Gardeniers, Han J. G. E.</au><au>Tas, Niels R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>15847</spage><epage>15854</epage><pages>15847-15854</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>High-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes). Nanogaps of 6 nm and freestanding silicon dioxide flaps as thin as 1–2 nm can be obtained when etching the silicon at the exposed apices of the wedges. To enable the repetitive procedure, it was necessary to protect the concave corners between the wedges through “concave” corner lithography. The produced high-density arrays of wedges offer a promising template for the fabrication of large arrays of nanodevices in various domains with relevant details in the sub-10 nm range.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.2c04079</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5731-1481</orcidid><orcidid>https://orcid.org/0000-0002-4021-5036</orcidid><orcidid>https://orcid.org/0000-0003-0581-2668</orcidid><orcidid>https://orcid.org/0000-0001-7541-4345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2022-10, Vol.5 (10), p.15847-15854 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623545 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Self-Aligned Crystallographic Multiplication of Nanoscale Silicon Wedges for High-Density Fabrication of 3D Nanodevices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Aligned%20Crystallographic%20Multiplication%20of%20Nanoscale%20Silicon%20Wedges%20for%20High-Density%20Fabrication%20of%203D%20Nanodevices&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Berenschot,%20Erwin&rft.date=2022-10-28&rft.volume=5&rft.issue=10&rft.spage=15847&rft.epage=15854&rft.pages=15847-15854&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.2c04079&rft_dat=%3Cproquest_pubme%3E2733206046%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a402t-c7aa20d5123af6646d8b11bef38d703a1a1c9d466d1593324747d76063c3a3d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733206046&rft_id=info:pmid/&rfr_iscdi=true |