Loading…

High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices

Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of T...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2022-10, Vol.5 (10), p.15557-15562
Main Authors: ter Huurne, Stan E.T., Da Cruz, Adonai Rodrigues, van Hoof, Niels, Godiksen, Rasmus H., Elrafei, Sara A., Curto, Alberto G., Flatté, Michael E., Rivas, Jaime Gómez
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15562
container_issue 10
container_start_page 15557
container_title ACS applied nano materials
container_volume 5
creator ter Huurne, Stan E.T.
Da Cruz, Adonai Rodrigues
van Hoof, Niels
Godiksen, Rasmus H.
Elrafei, Sara A.
Curto, Alberto G.
Flatté, Michael E.
Rivas, Jaime Gómez
description Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS2). The high spatial resolution of THz near-field spectroscopy enables mapping of the sheet conductance for an increasing number of atomic layers. The single-crystalline structure of the nanolayered crystal allows for the direct observation of low-energy phonon modes, which are present in all thicknesses, coupling with free carriers. Density functional theory calculations show that the phonon mode corresponds to the breathing mode between atomic layers in the weakly bonded van der Waals layers, which can be strongly influenced by substrate-induced strain. The non-invasive and high-resolution mapping technique of carrier dynamics in nanolayered crystals by time-resolved THz time domain spectroscopy enables possibilities for the investigation of the relation between phonons and charge transport in nanoscale semiconductors for applications in two-dimensional nanodevices.
doi_str_mv 10.1021/acsanm.2c03517
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733205987</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-fdeaab875fc8915f1cb197a249ba5193d9da76af59c8b03673f97f096c3e65fa3</originalsourceid><addsrcrecordid>eNpVkcFLwzAYxYsoOOaunnsUoZo0S9NcBJnOCUMPm3gRwtf0y9bRJjNpJ_vvrW4HPX0P3o8H33tRdEnJDSUpvQUdwDY3qSaMU3ESDVIuxgmRgpz-0efRKIQNIYRKmjFCBtHHrFqtk6nHzw6t3seLNWIbT5wtO92C1Rg7E7-AdTXs0WMZvy_SeOL3oYU6xMb5ePnlkoeqQRsqZ6H-hUvcVRrDRXRmegxHxzuM3qaPy8ksmb8-PU_u5wmk47xNTIkARS640bmk3FBdUCl6TxbAqWSlLEFkYLjUeUFYJpiRwhCZaYYZN8CG0d0hd9sVDZYabeuhVltfNeD3ykGl_ju2WquV2ymZpYyPsz7g6hjgXV9EaFVTBY11DRZdF1QqGEsJl7no0esD2jeuNq7z_c9BUaJ-ZlCHGdRxBvYNk2d-Sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733205987</pqid></control><display><type>article</type><title>High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>ter Huurne, Stan E.T. ; Da Cruz, Adonai Rodrigues ; van Hoof, Niels ; Godiksen, Rasmus H. ; Elrafei, Sara A. ; Curto, Alberto G. ; Flatté, Michael E. ; Rivas, Jaime Gómez</creator><creatorcontrib>ter Huurne, Stan E.T. ; Da Cruz, Adonai Rodrigues ; van Hoof, Niels ; Godiksen, Rasmus H. ; Elrafei, Sara A. ; Curto, Alberto G. ; Flatté, Michael E. ; Rivas, Jaime Gómez</creatorcontrib><description>Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS2). The high spatial resolution of THz near-field spectroscopy enables mapping of the sheet conductance for an increasing number of atomic layers. The single-crystalline structure of the nanolayered crystal allows for the direct observation of low-energy phonon modes, which are present in all thicknesses, coupling with free carriers. Density functional theory calculations show that the phonon mode corresponds to the breathing mode between atomic layers in the weakly bonded van der Waals layers, which can be strongly influenced by substrate-induced strain. The non-invasive and high-resolution mapping technique of carrier dynamics in nanolayered crystals by time-resolved THz time domain spectroscopy enables possibilities for the investigation of the relation between phonons and charge transport in nanoscale semiconductors for applications in two-dimensional nanodevices.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.2c03517</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2022-10, Vol.5 (10), p.15557-15562</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8038-0968 ; 0000-0002-7488-043X ; 0000-0001-8719-399X ; 0000-0002-6179-2668 ; 0000-0001-5093-1549 ; 0000-0003-3628-5311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>ter Huurne, Stan E.T.</creatorcontrib><creatorcontrib>Da Cruz, Adonai Rodrigues</creatorcontrib><creatorcontrib>van Hoof, Niels</creatorcontrib><creatorcontrib>Godiksen, Rasmus H.</creatorcontrib><creatorcontrib>Elrafei, Sara A.</creatorcontrib><creatorcontrib>Curto, Alberto G.</creatorcontrib><creatorcontrib>Flatté, Michael E.</creatorcontrib><creatorcontrib>Rivas, Jaime Gómez</creatorcontrib><title>High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS2). The high spatial resolution of THz near-field spectroscopy enables mapping of the sheet conductance for an increasing number of atomic layers. The single-crystalline structure of the nanolayered crystal allows for the direct observation of low-energy phonon modes, which are present in all thicknesses, coupling with free carriers. Density functional theory calculations show that the phonon mode corresponds to the breathing mode between atomic layers in the weakly bonded van der Waals layers, which can be strongly influenced by substrate-induced strain. The non-invasive and high-resolution mapping technique of carrier dynamics in nanolayered crystals by time-resolved THz time domain spectroscopy enables possibilities for the investigation of the relation between phonons and charge transport in nanoscale semiconductors for applications in two-dimensional nanodevices.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkcFLwzAYxYsoOOaunnsUoZo0S9NcBJnOCUMPm3gRwtf0y9bRJjNpJ_vvrW4HPX0P3o8H33tRdEnJDSUpvQUdwDY3qSaMU3ESDVIuxgmRgpz-0efRKIQNIYRKmjFCBtHHrFqtk6nHzw6t3seLNWIbT5wtO92C1Rg7E7-AdTXs0WMZvy_SeOL3oYU6xMb5ePnlkoeqQRsqZ6H-hUvcVRrDRXRmegxHxzuM3qaPy8ksmb8-PU_u5wmk47xNTIkARS640bmk3FBdUCl6TxbAqWSlLEFkYLjUeUFYJpiRwhCZaYYZN8CG0d0hd9sVDZYabeuhVltfNeD3ykGl_ju2WquV2ymZpYyPsz7g6hjgXV9EaFVTBY11DRZdF1QqGEsJl7no0esD2jeuNq7z_c9BUaJ-ZlCHGdRxBvYNk2d-Sg</recordid><startdate>20221028</startdate><enddate>20221028</enddate><creator>ter Huurne, Stan E.T.</creator><creator>Da Cruz, Adonai Rodrigues</creator><creator>van Hoof, Niels</creator><creator>Godiksen, Rasmus H.</creator><creator>Elrafei, Sara A.</creator><creator>Curto, Alberto G.</creator><creator>Flatté, Michael E.</creator><creator>Rivas, Jaime Gómez</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8038-0968</orcidid><orcidid>https://orcid.org/0000-0002-7488-043X</orcidid><orcidid>https://orcid.org/0000-0001-8719-399X</orcidid><orcidid>https://orcid.org/0000-0002-6179-2668</orcidid><orcidid>https://orcid.org/0000-0001-5093-1549</orcidid><orcidid>https://orcid.org/0000-0003-3628-5311</orcidid></search><sort><creationdate>20221028</creationdate><title>High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices</title><author>ter Huurne, Stan E.T. ; Da Cruz, Adonai Rodrigues ; van Hoof, Niels ; Godiksen, Rasmus H. ; Elrafei, Sara A. ; Curto, Alberto G. ; Flatté, Michael E. ; Rivas, Jaime Gómez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-fdeaab875fc8915f1cb197a249ba5193d9da76af59c8b03673f97f096c3e65fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ter Huurne, Stan E.T.</creatorcontrib><creatorcontrib>Da Cruz, Adonai Rodrigues</creatorcontrib><creatorcontrib>van Hoof, Niels</creatorcontrib><creatorcontrib>Godiksen, Rasmus H.</creatorcontrib><creatorcontrib>Elrafei, Sara A.</creatorcontrib><creatorcontrib>Curto, Alberto G.</creatorcontrib><creatorcontrib>Flatté, Michael E.</creatorcontrib><creatorcontrib>Rivas, Jaime Gómez</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ter Huurne, Stan E.T.</au><au>Da Cruz, Adonai Rodrigues</au><au>van Hoof, Niels</au><au>Godiksen, Rasmus H.</au><au>Elrafei, Sara A.</au><au>Curto, Alberto G.</au><au>Flatté, Michael E.</au><au>Rivas, Jaime Gómez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2022-10-28</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>15557</spage><epage>15562</epage><pages>15557-15562</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Time-resolved terahertz (THz) spectroscopy is a powerful technique for the determination of charge transport properties in photoexcited semiconductors. However, the relatively long wavelengths of THz radiation and the diffraction limit imposed by optical imaging systems reduce the applicability of THz spectroscopy to large samples with dimensions in the millimeter to centimeter range. Exploiting THz near-field spectroscopy, we present the first time-resolved THz measurements on a single exfoliated 2D nanolayered crystal of a transition metal dichalcogenide (WS2). The high spatial resolution of THz near-field spectroscopy enables mapping of the sheet conductance for an increasing number of atomic layers. The single-crystalline structure of the nanolayered crystal allows for the direct observation of low-energy phonon modes, which are present in all thicknesses, coupling with free carriers. Density functional theory calculations show that the phonon mode corresponds to the breathing mode between atomic layers in the weakly bonded van der Waals layers, which can be strongly influenced by substrate-induced strain. The non-invasive and high-resolution mapping technique of carrier dynamics in nanolayered crystals by time-resolved THz time domain spectroscopy enables possibilities for the investigation of the relation between phonons and charge transport in nanoscale semiconductors for applications in two-dimensional nanodevices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.2c03517</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8038-0968</orcidid><orcidid>https://orcid.org/0000-0002-7488-043X</orcidid><orcidid>https://orcid.org/0000-0001-8719-399X</orcidid><orcidid>https://orcid.org/0000-0002-6179-2668</orcidid><orcidid>https://orcid.org/0000-0001-5093-1549</orcidid><orcidid>https://orcid.org/0000-0003-3628-5311</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2022-10, Vol.5 (10), p.15557-15562
issn 2574-0970
2574-0970
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9623546
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Sheet%20Conductance%20of%20Nanolayered%20WS2%20Crystals%20for%20Two-Dimensional%20Nanodevices&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=ter%20Huurne,%20Stan%20E.T.&rft.date=2022-10-28&rft.volume=5&rft.issue=10&rft.spage=15557&rft.epage=15562&rft.pages=15557-15562&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.2c03517&rft_dat=%3Cproquest_pubme%3E2733205987%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a248t-fdeaab875fc8915f1cb197a249ba5193d9da76af59c8b03673f97f096c3e65fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733205987&rft_id=info:pmid/&rfr_iscdi=true