Loading…
A Comprehensive Framework for Saturation Theorem Proving
A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only...
Saved in:
Published in: | Journal of automated reasoning 2022-11, Vol.66 (4), p.499-539 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163 |
container_end_page | 539 |
container_issue | 4 |
container_start_page | 499 |
container_title | Journal of automated reasoning |
container_volume | 66 |
creator | Waldmann, Uwe Tourret, Sophie Robillard, Simon Blanchette, Jasmin |
description | A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only for derivations where all deleted formulas are redundant, but the standard notion of redundancy is too weak: A clause
C
does not make an instance
C
σ
redundant. We present a framework for formal refutational completeness proofs of abstract provers that implement saturation calculi, such as ordered resolution and superposition. The framework modularly extends redundancy criteria derived via a familiar ground-to-nonground lifting. It allows us to extend redundancy criteria so that they cover subsumption, and also to model entire prover architectures so that the static refutational completeness of a calculus immediately implies the dynamic refutational completeness of a prover implementing the calculus within, for instance, an Otter or DISCOUNT loop. Our framework is mechanized in Isabelle/HOL. |
doi_str_mv | 10.1007/s10817-022-09621-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9637109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735167683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163</originalsourceid><addsrcrecordid>eNp9kU1LJDEQhoOs6Oj6BzwsDXvRQ2sl6XSSy8Iw-AUDCqvnkGkrM-1Od8ake5b992Zsvw8LgUDqqfetykvIIYUTCiBPIwVFZQ6M5aBLRnO5RUZUSJ5DKeEbGQEtVS4LznfJXowPAMAp6B2yy0sueKmKEVHjbOKbVcAFtrFeY3YebIN_ffiTOR-y37brg-1q32a3C_QBm-wm-HXdzr-TbWeXEQ9e7n1yd352O7nMp9cXV5PxNK8EqC4vkiMw51wheUHFDJRQyrqZQgSnhGb3QgpXAVKltU0HQVklgQuraJqf75Nfg-6qnzV4X2HbBbs0q1A3Nvwz3tbmc6WtF2bu10aXXKZtk8DxILD40nY5nprNG3ANWiu-pok9ejEL_rHH2JmmjhUul7ZF30fDJBe0lKXiCf35BX3wfWjTV2woRgtgIBLFBqoKPsaA7m0CCmYTohlCNClE8xyikanpx8eV31peU0sAH4CYSu0cw7v3f2SfAIqopVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732140205</pqid></control><display><type>article</type><title>A Comprehensive Framework for Saturation Theorem Proving</title><source>Springer Nature</source><creator>Waldmann, Uwe ; Tourret, Sophie ; Robillard, Simon ; Blanchette, Jasmin</creator><creatorcontrib>Waldmann, Uwe ; Tourret, Sophie ; Robillard, Simon ; Blanchette, Jasmin</creatorcontrib><description>A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only for derivations where all deleted formulas are redundant, but the standard notion of redundancy is too weak: A clause
C
does not make an instance
C
σ
redundant. We present a framework for formal refutational completeness proofs of abstract provers that implement saturation calculi, such as ordered resolution and superposition. The framework modularly extends redundancy criteria derived via a familiar ground-to-nonground lifting. It allows us to extend redundancy criteria so that they cover subsumption, and also to model entire prover architectures so that the static refutational completeness of a calculus immediately implies the dynamic refutational completeness of a prover implementing the calculus within, for instance, an Otter or DISCOUNT loop. Our framework is mechanized in Isabelle/HOL.</description><identifier>ISSN: 0168-7433</identifier><identifier>ISSN: 1573-0670</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-022-09621-7</identifier><identifier>PMID: 36353684</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Automation ; Calculi ; Calculus ; Completeness ; Computer Science ; Criteria ; Logic in Computer Science ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Redundancy ; Saturation ; Symbolic and Algebraic Manipulation ; Theorem proving</subject><ispartof>Journal of automated reasoning, 2022-11, Vol.66 (4), p.499-539</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163</citedby><cites>FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163</cites><orcidid>0000-0002-0676-7195 ; 0000-0002-8367-0936 ; 0000-0003-4751-380X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36353684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-03909983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Waldmann, Uwe</creatorcontrib><creatorcontrib>Tourret, Sophie</creatorcontrib><creatorcontrib>Robillard, Simon</creatorcontrib><creatorcontrib>Blanchette, Jasmin</creatorcontrib><title>A Comprehensive Framework for Saturation Theorem Proving</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><addtitle>J Autom Reason</addtitle><description>A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only for derivations where all deleted formulas are redundant, but the standard notion of redundancy is too weak: A clause
C
does not make an instance
C
σ
redundant. We present a framework for formal refutational completeness proofs of abstract provers that implement saturation calculi, such as ordered resolution and superposition. The framework modularly extends redundancy criteria derived via a familiar ground-to-nonground lifting. It allows us to extend redundancy criteria so that they cover subsumption, and also to model entire prover architectures so that the static refutational completeness of a calculus immediately implies the dynamic refutational completeness of a prover implementing the calculus within, for instance, an Otter or DISCOUNT loop. Our framework is mechanized in Isabelle/HOL.</description><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Calculi</subject><subject>Calculus</subject><subject>Completeness</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Logic in Computer Science</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Redundancy</subject><subject>Saturation</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Theorem proving</subject><issn>0168-7433</issn><issn>1573-0670</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LJDEQhoOs6Oj6BzwsDXvRQ2sl6XSSy8Iw-AUDCqvnkGkrM-1Od8ake5b992Zsvw8LgUDqqfetykvIIYUTCiBPIwVFZQ6M5aBLRnO5RUZUSJ5DKeEbGQEtVS4LznfJXowPAMAp6B2yy0sueKmKEVHjbOKbVcAFtrFeY3YebIN_ffiTOR-y37brg-1q32a3C_QBm-wm-HXdzr-TbWeXEQ9e7n1yd352O7nMp9cXV5PxNK8EqC4vkiMw51wheUHFDJRQyrqZQgSnhGb3QgpXAVKltU0HQVklgQuraJqf75Nfg-6qnzV4X2HbBbs0q1A3Nvwz3tbmc6WtF2bu10aXXKZtk8DxILD40nY5nprNG3ANWiu-pok9ejEL_rHH2JmmjhUul7ZF30fDJBe0lKXiCf35BX3wfWjTV2woRgtgIBLFBqoKPsaA7m0CCmYTohlCNClE8xyikanpx8eV31peU0sAH4CYSu0cw7v3f2SfAIqopVo</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Waldmann, Uwe</creator><creator>Tourret, Sophie</creator><creator>Robillard, Simon</creator><creator>Blanchette, Jasmin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0676-7195</orcidid><orcidid>https://orcid.org/0000-0002-8367-0936</orcidid><orcidid>https://orcid.org/0000-0003-4751-380X</orcidid></search><sort><creationdate>20221101</creationdate><title>A Comprehensive Framework for Saturation Theorem Proving</title><author>Waldmann, Uwe ; Tourret, Sophie ; Robillard, Simon ; Blanchette, Jasmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Calculi</topic><topic>Calculus</topic><topic>Completeness</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Logic in Computer Science</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Redundancy</topic><topic>Saturation</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Theorem proving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waldmann, Uwe</creatorcontrib><creatorcontrib>Tourret, Sophie</creatorcontrib><creatorcontrib>Robillard, Simon</creatorcontrib><creatorcontrib>Blanchette, Jasmin</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waldmann, Uwe</au><au>Tourret, Sophie</au><au>Robillard, Simon</au><au>Blanchette, Jasmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Framework for Saturation Theorem Proving</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><addtitle>J Autom Reason</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>66</volume><issue>4</issue><spage>499</spage><epage>539</epage><pages>499-539</pages><issn>0168-7433</issn><issn>1573-0670</issn><eissn>1573-0670</eissn><abstract>A crucial operation of saturation theorem provers is deletion of subsumed formulas. Designers of proof calculi, however, usually discuss this only informally, and the rare formal expositions tend to be clumsy. This is because the equivalence of dynamic and static refutational completeness holds only for derivations where all deleted formulas are redundant, but the standard notion of redundancy is too weak: A clause
C
does not make an instance
C
σ
redundant. We present a framework for formal refutational completeness proofs of abstract provers that implement saturation calculi, such as ordered resolution and superposition. The framework modularly extends redundancy criteria derived via a familiar ground-to-nonground lifting. It allows us to extend redundancy criteria so that they cover subsumption, and also to model entire prover architectures so that the static refutational completeness of a calculus immediately implies the dynamic refutational completeness of a prover implementing the calculus within, for instance, an Otter or DISCOUNT loop. Our framework is mechanized in Isabelle/HOL.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36353684</pmid><doi>10.1007/s10817-022-09621-7</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-0676-7195</orcidid><orcidid>https://orcid.org/0000-0002-8367-0936</orcidid><orcidid>https://orcid.org/0000-0003-4751-380X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-7433 |
ispartof | Journal of automated reasoning, 2022-11, Vol.66 (4), p.499-539 |
issn | 0168-7433 1573-0670 1573-0670 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9637109 |
source | Springer Nature |
subjects | Artificial Intelligence Automation Calculi Calculus Completeness Computer Science Criteria Logic in Computer Science Mathematical Logic and Formal Languages Mathematical Logic and Foundations Redundancy Saturation Symbolic and Algebraic Manipulation Theorem proving |
title | A Comprehensive Framework for Saturation Theorem Proving |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Framework%20for%20Saturation%20Theorem%20Proving&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Waldmann,%20Uwe&rft.date=2022-11-01&rft.volume=66&rft.issue=4&rft.spage=499&rft.epage=539&rft.pages=499-539&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-022-09621-7&rft_dat=%3Cproquest_pubme%3E2735167683%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-431002fff473415b08588afb8ee0f8592d575fc0e1899a99ae08a87035a810163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2732140205&rft_id=info:pmid/36353684&rfr_iscdi=true |