Loading…

Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer

Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used r...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-11, Vol.13 (1), p.6753-6753, Article 6753
Main Authors: Shamai, Gil, Livne, Amir, Polónia, António, Sabo, Edmond, Cretu, Alexandra, Bar-Sela, Gil, Kimmel, Ron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3
cites cdi_FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3
container_end_page 6753
container_issue 1
container_start_page 6753
container_title Nature communications
container_volume 13
creator Shamai, Gil
Livne, Amir
Polónia, António
Sabo, Edmond
Cretu, Alexandra
Bar-Sela, Gil
Kimmel, Ron
description Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice. Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. Here, the authors show that PD-L1 expression can be predicted from H&E-stained images using deep learning.
doi_str_mv 10.1038/s41467-022-34275-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734615925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-CALCEhLob4X-xckFBbKNJKcICz5TiTrKusHTzZSvvt8TalFA74Ylvzm-fneVX1ktXvWC3Me5RMNprWnFMhuVa0fVKd8loyyjQXTx-dT6pzxJu6LNEyI-Xz6kQ0Qmqj5Gk1XwLMZAKXY4gj7RxCT8LOjUBcdNMBA5I5Qx_8guTbJd0wgotb9kiGnHbk-s0VLfcQS9c24JJmt2zTlMbDKoIkRNJlcLgQ76KH_KJ6NrgJ4fx-P6t-fLr6fnFNN18_f7n4uKFearnQTncdb7w3AzStYUz3xrQeaqX7voaeNY3sHCjupSoo-F4oXiuhB9crrttBnFUfVt153-2g9xCX7CY75-IrH2xywf5diWFrx3Rr20aW4bRF4O29QE4_94CL3QX0ME0uQtqj5VrIhqmWq4K-_ge9SftcxndHCdMYI44UXymfE2KG4cEMq-0xU7tmakum9i5Te3Tx6vE3Hlp-J1gAsQJYSnGE_Oft_8j-AofZrg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733868835</pqid></control><display><type>article</type><title>Deep learning-based image analysis predicts PD-L1 status from H&amp;E-stained histopathology images in breast cancer</title><source>PubMed Central Free</source><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shamai, Gil ; Livne, Amir ; Polónia, António ; Sabo, Edmond ; Cretu, Alexandra ; Bar-Sela, Gil ; Kimmel, Ron</creator><creatorcontrib>Shamai, Gil ; Livne, Amir ; Polónia, António ; Sabo, Edmond ; Cretu, Alexandra ; Bar-Sela, Gil ; Kimmel, Ron</creatorcontrib><description>Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&amp;E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&amp;E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&amp;E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice. Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. Here, the authors show that PD-L1 expression can be predicted from H&amp;E-stained images using deep learning.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34275-9</identifier><identifier>PMID: 36347854</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/105 ; 13/51 ; 631/114/1305 ; 631/114/1564 ; 631/67/1347 ; 692/308/53/2423 ; 692/308/575 ; Annotations ; B7-H1 Antigen - metabolism ; Biomarkers ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - genetics ; Datasets ; Decision support systems ; Deep Learning ; Female ; Hematoxylin ; Histopathology ; Humanities and Social Sciences ; Humans ; Image analysis ; Image processing ; Immunohistochemistry ; Immunotherapy ; Ligands ; Lung Neoplasms - pathology ; Medical imaging ; multidisciplinary ; PD-L1 protein ; Quality assurance ; Science ; Science (multidisciplinary) ; Staining and Labeling</subject><ispartof>Nature communications, 2022-11, Vol.13 (1), p.6753-6753, Article 6753</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3</citedby><cites>FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3</cites><orcidid>0000-0002-8099-3027 ; 0000-0001-8312-1681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2733868835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2733868835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36347854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shamai, Gil</creatorcontrib><creatorcontrib>Livne, Amir</creatorcontrib><creatorcontrib>Polónia, António</creatorcontrib><creatorcontrib>Sabo, Edmond</creatorcontrib><creatorcontrib>Cretu, Alexandra</creatorcontrib><creatorcontrib>Bar-Sela, Gil</creatorcontrib><creatorcontrib>Kimmel, Ron</creatorcontrib><title>Deep learning-based image analysis predicts PD-L1 status from H&amp;E-stained histopathology images in breast cancer</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&amp;E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&amp;E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&amp;E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice. Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. Here, the authors show that PD-L1 expression can be predicted from H&amp;E-stained images using deep learning.</description><subject>13/105</subject><subject>13/51</subject><subject>631/114/1305</subject><subject>631/114/1564</subject><subject>631/67/1347</subject><subject>692/308/53/2423</subject><subject>692/308/575</subject><subject>Annotations</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Datasets</subject><subject>Decision support systems</subject><subject>Deep Learning</subject><subject>Female</subject><subject>Hematoxylin</subject><subject>Histopathology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Immunohistochemistry</subject><subject>Immunotherapy</subject><subject>Ligands</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical imaging</subject><subject>multidisciplinary</subject><subject>PD-L1 protein</subject><subject>Quality assurance</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Staining and Labeling</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-CALCEhLob4X-xckFBbKNJKcICz5TiTrKusHTzZSvvt8TalFA74Ylvzm-fneVX1ktXvWC3Me5RMNprWnFMhuVa0fVKd8loyyjQXTx-dT6pzxJu6LNEyI-Xz6kQ0Qmqj5Gk1XwLMZAKXY4gj7RxCT8LOjUBcdNMBA5I5Qx_8guTbJd0wgotb9kiGnHbk-s0VLfcQS9c24JJmt2zTlMbDKoIkRNJlcLgQ76KH_KJ6NrgJ4fx-P6t-fLr6fnFNN18_f7n4uKFearnQTncdb7w3AzStYUz3xrQeaqX7voaeNY3sHCjupSoo-F4oXiuhB9crrttBnFUfVt153-2g9xCX7CY75-IrH2xywf5diWFrx3Rr20aW4bRF4O29QE4_94CL3QX0ME0uQtqj5VrIhqmWq4K-_ge9SftcxndHCdMYI44UXymfE2KG4cEMq-0xU7tmakum9i5Te3Tx6vE3Hlp-J1gAsQJYSnGE_Oft_8j-AofZrg0</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Shamai, Gil</creator><creator>Livne, Amir</creator><creator>Polónia, António</creator><creator>Sabo, Edmond</creator><creator>Cretu, Alexandra</creator><creator>Bar-Sela, Gil</creator><creator>Kimmel, Ron</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8099-3027</orcidid><orcidid>https://orcid.org/0000-0001-8312-1681</orcidid></search><sort><creationdate>20221108</creationdate><title>Deep learning-based image analysis predicts PD-L1 status from H&amp;E-stained histopathology images in breast cancer</title><author>Shamai, Gil ; Livne, Amir ; Polónia, António ; Sabo, Edmond ; Cretu, Alexandra ; Bar-Sela, Gil ; Kimmel, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/105</topic><topic>13/51</topic><topic>631/114/1305</topic><topic>631/114/1564</topic><topic>631/67/1347</topic><topic>692/308/53/2423</topic><topic>692/308/575</topic><topic>Annotations</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Datasets</topic><topic>Decision support systems</topic><topic>Deep Learning</topic><topic>Female</topic><topic>Hematoxylin</topic><topic>Histopathology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Immunohistochemistry</topic><topic>Immunotherapy</topic><topic>Ligands</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical imaging</topic><topic>multidisciplinary</topic><topic>PD-L1 protein</topic><topic>Quality assurance</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Staining and Labeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamai, Gil</creatorcontrib><creatorcontrib>Livne, Amir</creatorcontrib><creatorcontrib>Polónia, António</creatorcontrib><creatorcontrib>Sabo, Edmond</creatorcontrib><creatorcontrib>Cretu, Alexandra</creatorcontrib><creatorcontrib>Bar-Sela, Gil</creatorcontrib><creatorcontrib>Kimmel, Ron</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamai, Gil</au><au>Livne, Amir</au><au>Polónia, António</au><au>Sabo, Edmond</au><au>Cretu, Alexandra</au><au>Bar-Sela, Gil</au><au>Kimmel, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based image analysis predicts PD-L1 status from H&amp;E-stained histopathology images in breast cancer</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-11-08</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>6753</spage><epage>6753</epage><pages>6753-6753</pages><artnum>6753</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxylin and eosin (H&amp;E) is a robust staining used routinely for cancer diagnosis. Here, we show that PD-L1 expression can be predicted from H&amp;E-stained images by employing state-of-the-art deep learning techniques. With the help of two expert pathologists and a designed annotation software, we construct a dataset to assess the feasibility of PD-L1 prediction from H&amp;E in breast cancer. In a cohort of 3,376 patients, our system predicts the PD-L1 status in a high area under the curve (AUC) of 0.91 – 0.93. Our system is validated on two external datasets, including an independent clinical trial cohort, showing consistent prediction performance. Furthermore, the proposed system predicts which cases are prone to pathologists miss-interpretation, showing it can serve as a decision support and quality assurance system in clinical practice. Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. Here, the authors show that PD-L1 expression can be predicted from H&amp;E-stained images using deep learning.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36347854</pmid><doi>10.1038/s41467-022-34275-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8099-3027</orcidid><orcidid>https://orcid.org/0000-0001-8312-1681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-11, Vol.13 (1), p.6753-6753, Article 6753
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643479
source PubMed Central Free; Nature; ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/105
13/51
631/114/1305
631/114/1564
631/67/1347
692/308/53/2423
692/308/575
Annotations
B7-H1 Antigen - metabolism
Biomarkers
Biomarkers, Tumor - metabolism
Breast cancer
Breast Neoplasms - genetics
Datasets
Decision support systems
Deep Learning
Female
Hematoxylin
Histopathology
Humanities and Social Sciences
Humans
Image analysis
Image processing
Immunohistochemistry
Immunotherapy
Ligands
Lung Neoplasms - pathology
Medical imaging
multidisciplinary
PD-L1 protein
Quality assurance
Science
Science (multidisciplinary)
Staining and Labeling
title Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20image%20analysis%20predicts%20PD-L1%20status%20from%20H&E-stained%20histopathology%20images%20in%20breast%20cancer&rft.jtitle=Nature%20communications&rft.au=Shamai,%20Gil&rft.date=2022-11-08&rft.volume=13&rft.issue=1&rft.spage=6753&rft.epage=6753&rft.pages=6753-6753&rft.artnum=6753&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34275-9&rft_dat=%3Cproquest_pubme%3E2734615925%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b7bb26cc8fe698117d889ce057dd0ed1664bae52c45b7becd3520537fad5279f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733868835&rft_id=info:pmid/36347854&rfr_iscdi=true