Loading…

Integration of Computational and Experimental Approaches to Elucidate Mechanisms of First-Pass Lymphatic Drug Sequestration and Long-Acting Pharmacokinetics of the Injectable Triple-HIV Drug Combination TLC-ART 101

TLC-ART101 is a long-acting triple-HIV drug combination of lopinavir-ritonavir-tenofovir in one nanosuspension intended for subcutaneous injection. After a single TLC-ART 101 administration in nonhuman primates, drug concentrations in both plasma and HIV-target lymph node mononuclear cells were sust...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2020-05, Vol.109 (5), p.1789-1801
Main Authors: Perazzolo, Simone, Shireman, Laura M., McConnachie, Lisa A., Koehn, Josefin, Kinman, Loren, Lee, Wonsok, Lane, Sarah, Collier, Ann C., Shen, Danny D., Ho, Rodney J.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:TLC-ART101 is a long-acting triple-HIV drug combination of lopinavir-ritonavir-tenofovir in one nanosuspension intended for subcutaneous injection. After a single TLC-ART 101 administration in nonhuman primates, drug concentrations in both plasma and HIV-target lymph node mononuclear cells were sustained for 2 weeks. Nevertheless, the mechanisms leading to the targeted long-acting pharmacokinetics remain elusive. Therefore, an intravenous study of TLC-ART 101 in nonhuman primates was conducted to elucidate the degree of association of drugs in vivo, estimate subcutaneous bioavailability, and refine a mechanism-based pharmacokinetic (MBPK2) model. The MBPK2 model considers TLC-ART 101 systemic drug clearances, nanoparticle-associated/dissociated species, more detailed mechanisms of lymphatic first-pass retention of associated-drugs after subcutaneous administrations, and the prediction of drug concentration time-courses in lymph node mononuclear cells. For all 3 drugs, we found a high association with the nanoparticles in plasma (>87% lopinavir-ritonavir, 97% tenofovir), and an incomplete subcutaneous bioavailability (
ISSN:0022-3549
1520-6017
1520-6017
DOI:10.1016/j.xphs.2020.01.016