Loading…
3D stretchable and self-encapsulated multimaterial triboelectric fibers
A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limi...
Saved in:
Published in: | Science advances 2022-11, Vol.8 (45), p.eabo0869-eabo0869 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583 |
container_end_page | eabo0869 |
container_issue | 45 |
container_start_page | eabo0869 |
container_title | Science advances |
container_volume | 8 |
creator | Dong, Chaoqun Leber, Andreas Yan, Dong Banerjee, Hritwick Laperrousaz, Stella Das Gupta, Tapajyoti Shadman, Shahrzad Reis, Pedro M Sorin, Fabien |
description | A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes. |
doi_str_mv | 10.1126/sciadv.abo0869 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9651858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735877192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIVqVXjihHLil2nPhxQUIFClIlLnC2_FjTIDcpdlKJvycoBZXTjnZnZx-D0CXBC0IKdpNsrd1-oU2LBZMnaFpQXuVFVYrTIzxB85Q-MMakZKwi8hxNKKOMS8qnaEXvs9RF6OxGmwCZblyWIPgcGqt3qQ-6A5dt-9DV2wHGWoesi7VpIYAdgM18bSCmC3TmdUgwP8QZent8eF0-5euX1fPybp1bKnGXl8IaC7qSjhXMEUMN594KySmuKBmyFRSCeeMFcxSYK4zGxlpfOqKtqASdodtRd9ebLTgLTRd1ULs4rBe_VKtr9b_S1Bv13u6VHE4fBa4PArH97CF1alsnCyHoBto-qYLTSnBOZDFQFyPVxjalCP5vDMHqxwA1GqAOBgwNV8fL_dF_302_AZyYhho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735877192</pqid></control><display><type>article</type><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><source>American Association for the Advancement of Science</source><source>PubMed (Medline)</source><creator>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</creator><creatorcontrib>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</creatorcontrib><description>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abo0869</identifier><identifier>PMID: 36367937</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-11, Vol.8 (45), p.eabo0869-eabo0869</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</citedby><cites>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</cites><orcidid>0000-0002-4605-2071 ; 0000-0002-0351-7561 ; 0000-0002-7988-3031 ; 0000-0003-1019-6484 ; 0000-0003-2939-646X ; 0000-0003-4158-6522 ; 0000-0003-3984-828X ; 0000-0001-6433-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36367937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chaoqun</creatorcontrib><creatorcontrib>Leber, Andreas</creatorcontrib><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Banerjee, Hritwick</creatorcontrib><creatorcontrib>Laperrousaz, Stella</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Shadman, Shahrzad</creatorcontrib><creatorcontrib>Reis, Pedro M</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBCIVqVXjihHLil2nPhxQUIFClIlLnC2_FjTIDcpdlKJvycoBZXTjnZnZx-D0CXBC0IKdpNsrd1-oU2LBZMnaFpQXuVFVYrTIzxB85Q-MMakZKwi8hxNKKOMS8qnaEXvs9RF6OxGmwCZblyWIPgcGqt3qQ-6A5dt-9DV2wHGWoesi7VpIYAdgM18bSCmC3TmdUgwP8QZent8eF0-5euX1fPybp1bKnGXl8IaC7qSjhXMEUMN594KySmuKBmyFRSCeeMFcxSYK4zGxlpfOqKtqASdodtRd9ebLTgLTRd1ULs4rBe_VKtr9b_S1Bv13u6VHE4fBa4PArH97CF1alsnCyHoBto-qYLTSnBOZDFQFyPVxjalCP5vDMHqxwA1GqAOBgwNV8fL_dF_302_AZyYhho</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Dong, Chaoqun</creator><creator>Leber, Andreas</creator><creator>Yan, Dong</creator><creator>Banerjee, Hritwick</creator><creator>Laperrousaz, Stella</creator><creator>Das Gupta, Tapajyoti</creator><creator>Shadman, Shahrzad</creator><creator>Reis, Pedro M</creator><creator>Sorin, Fabien</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0351-7561</orcidid><orcidid>https://orcid.org/0000-0002-7988-3031</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0003-2939-646X</orcidid><orcidid>https://orcid.org/0000-0003-4158-6522</orcidid><orcidid>https://orcid.org/0000-0003-3984-828X</orcidid><orcidid>https://orcid.org/0000-0001-6433-3478</orcidid></search><sort><creationdate>20221111</creationdate><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><author>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chaoqun</creatorcontrib><creatorcontrib>Leber, Andreas</creatorcontrib><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Banerjee, Hritwick</creatorcontrib><creatorcontrib>Laperrousaz, Stella</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Shadman, Shahrzad</creatorcontrib><creatorcontrib>Reis, Pedro M</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chaoqun</au><au>Leber, Andreas</au><au>Yan, Dong</au><au>Banerjee, Hritwick</au><au>Laperrousaz, Stella</au><au>Das Gupta, Tapajyoti</au><au>Shadman, Shahrzad</au><au>Reis, Pedro M</au><au>Sorin, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D stretchable and self-encapsulated multimaterial triboelectric fibers</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-11-11</date><risdate>2022</risdate><volume>8</volume><issue>45</issue><spage>eabo0869</spage><epage>eabo0869</epage><pages>eabo0869-eabo0869</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>36367937</pmid><doi>10.1126/sciadv.abo0869</doi><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0351-7561</orcidid><orcidid>https://orcid.org/0000-0002-7988-3031</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0003-2939-646X</orcidid><orcidid>https://orcid.org/0000-0003-4158-6522</orcidid><orcidid>https://orcid.org/0000-0003-3984-828X</orcidid><orcidid>https://orcid.org/0000-0001-6433-3478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-11, Vol.8 (45), p.eabo0869-eabo0869 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9651858 |
source | American Association for the Advancement of Science; PubMed (Medline) |
subjects | Applied Sciences and Engineering Materials Science Physical and Materials Sciences SciAdv r-articles |
title | 3D stretchable and self-encapsulated multimaterial triboelectric fibers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20stretchable%20and%20self-encapsulated%20multimaterial%20triboelectric%20fibers&rft.jtitle=Science%20advances&rft.au=Dong,%20Chaoqun&rft.date=2022-11-11&rft.volume=8&rft.issue=45&rft.spage=eabo0869&rft.epage=eabo0869&rft.pages=eabo0869-eabo0869&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abo0869&rft_dat=%3Cproquest_pubme%3E2735877192%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735877192&rft_id=info:pmid/36367937&rfr_iscdi=true |