Loading…

3D stretchable and self-encapsulated multimaterial triboelectric fibers

A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limi...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2022-11, Vol.8 (45), p.eabo0869-eabo0869
Main Authors: Dong, Chaoqun, Leber, Andreas, Yan, Dong, Banerjee, Hritwick, Laperrousaz, Stella, Das Gupta, Tapajyoti, Shadman, Shahrzad, Reis, Pedro M, Sorin, Fabien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583
cites cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583
container_end_page eabo0869
container_issue 45
container_start_page eabo0869
container_title Science advances
container_volume 8
creator Dong, Chaoqun
Leber, Andreas
Yan, Dong
Banerjee, Hritwick
Laperrousaz, Stella
Das Gupta, Tapajyoti
Shadman, Shahrzad
Reis, Pedro M
Sorin, Fabien
description A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.
doi_str_mv 10.1126/sciadv.abo0869
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9651858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735877192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIVqVXjihHLil2nPhxQUIFClIlLnC2_FjTIDcpdlKJvycoBZXTjnZnZx-D0CXBC0IKdpNsrd1-oU2LBZMnaFpQXuVFVYrTIzxB85Q-MMakZKwi8hxNKKOMS8qnaEXvs9RF6OxGmwCZblyWIPgcGqt3qQ-6A5dt-9DV2wHGWoesi7VpIYAdgM18bSCmC3TmdUgwP8QZent8eF0-5euX1fPybp1bKnGXl8IaC7qSjhXMEUMN594KySmuKBmyFRSCeeMFcxSYK4zGxlpfOqKtqASdodtRd9ebLTgLTRd1ULs4rBe_VKtr9b_S1Bv13u6VHE4fBa4PArH97CF1alsnCyHoBto-qYLTSnBOZDFQFyPVxjalCP5vDMHqxwA1GqAOBgwNV8fL_dF_302_AZyYhho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735877192</pqid></control><display><type>article</type><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><source>American Association for the Advancement of Science</source><source>PubMed (Medline)</source><creator>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</creator><creatorcontrib>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</creatorcontrib><description>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abo0869</identifier><identifier>PMID: 36367937</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Sciences and Engineering ; Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-11, Vol.8 (45), p.eabo0869-eabo0869</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</citedby><cites>FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</cites><orcidid>0000-0002-4605-2071 ; 0000-0002-0351-7561 ; 0000-0002-7988-3031 ; 0000-0003-1019-6484 ; 0000-0003-2939-646X ; 0000-0003-4158-6522 ; 0000-0003-3984-828X ; 0000-0001-6433-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651858/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9651858/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,2884,2885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36367937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chaoqun</creatorcontrib><creatorcontrib>Leber, Andreas</creatorcontrib><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Banerjee, Hritwick</creatorcontrib><creatorcontrib>Laperrousaz, Stella</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Shadman, Shahrzad</creatorcontrib><creatorcontrib>Reis, Pedro M</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</description><subject>Applied Sciences and Engineering</subject><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctOwzAQtBCIVqVXjihHLil2nPhxQUIFClIlLnC2_FjTIDcpdlKJvycoBZXTjnZnZx-D0CXBC0IKdpNsrd1-oU2LBZMnaFpQXuVFVYrTIzxB85Q-MMakZKwi8hxNKKOMS8qnaEXvs9RF6OxGmwCZblyWIPgcGqt3qQ-6A5dt-9DV2wHGWoesi7VpIYAdgM18bSCmC3TmdUgwP8QZent8eF0-5euX1fPybp1bKnGXl8IaC7qSjhXMEUMN594KySmuKBmyFRSCeeMFcxSYK4zGxlpfOqKtqASdodtRd9ebLTgLTRd1ULs4rBe_VKtr9b_S1Bv13u6VHE4fBa4PArH97CF1alsnCyHoBto-qYLTSnBOZDFQFyPVxjalCP5vDMHqxwA1GqAOBgwNV8fL_dF_302_AZyYhho</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Dong, Chaoqun</creator><creator>Leber, Andreas</creator><creator>Yan, Dong</creator><creator>Banerjee, Hritwick</creator><creator>Laperrousaz, Stella</creator><creator>Das Gupta, Tapajyoti</creator><creator>Shadman, Shahrzad</creator><creator>Reis, Pedro M</creator><creator>Sorin, Fabien</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0351-7561</orcidid><orcidid>https://orcid.org/0000-0002-7988-3031</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0003-2939-646X</orcidid><orcidid>https://orcid.org/0000-0003-4158-6522</orcidid><orcidid>https://orcid.org/0000-0003-3984-828X</orcidid><orcidid>https://orcid.org/0000-0001-6433-3478</orcidid></search><sort><creationdate>20221111</creationdate><title>3D stretchable and self-encapsulated multimaterial triboelectric fibers</title><author>Dong, Chaoqun ; Leber, Andreas ; Yan, Dong ; Banerjee, Hritwick ; Laperrousaz, Stella ; Das Gupta, Tapajyoti ; Shadman, Shahrzad ; Reis, Pedro M ; Sorin, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Sciences and Engineering</topic><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chaoqun</creatorcontrib><creatorcontrib>Leber, Andreas</creatorcontrib><creatorcontrib>Yan, Dong</creatorcontrib><creatorcontrib>Banerjee, Hritwick</creatorcontrib><creatorcontrib>Laperrousaz, Stella</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Shadman, Shahrzad</creatorcontrib><creatorcontrib>Reis, Pedro M</creatorcontrib><creatorcontrib>Sorin, Fabien</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chaoqun</au><au>Leber, Andreas</au><au>Yan, Dong</au><au>Banerjee, Hritwick</au><au>Laperrousaz, Stella</au><au>Das Gupta, Tapajyoti</au><au>Shadman, Shahrzad</au><au>Reis, Pedro M</au><au>Sorin, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D stretchable and self-encapsulated multimaterial triboelectric fibers</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-11-11</date><risdate>2022</risdate><volume>8</volume><issue>45</issue><spage>eabo0869</spage><epage>eabo0869</epage><pages>eabo0869-eabo0869</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber's deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>36367937</pmid><doi>10.1126/sciadv.abo0869</doi><orcidid>https://orcid.org/0000-0002-4605-2071</orcidid><orcidid>https://orcid.org/0000-0002-0351-7561</orcidid><orcidid>https://orcid.org/0000-0002-7988-3031</orcidid><orcidid>https://orcid.org/0000-0003-1019-6484</orcidid><orcidid>https://orcid.org/0000-0003-2939-646X</orcidid><orcidid>https://orcid.org/0000-0003-4158-6522</orcidid><orcidid>https://orcid.org/0000-0003-3984-828X</orcidid><orcidid>https://orcid.org/0000-0001-6433-3478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-11, Vol.8 (45), p.eabo0869-eabo0869
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9651858
source American Association for the Advancement of Science; PubMed (Medline)
subjects Applied Sciences and Engineering
Materials Science
Physical and Materials Sciences
SciAdv r-articles
title 3D stretchable and self-encapsulated multimaterial triboelectric fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20stretchable%20and%20self-encapsulated%20multimaterial%20triboelectric%20fibers&rft.jtitle=Science%20advances&rft.au=Dong,%20Chaoqun&rft.date=2022-11-11&rft.volume=8&rft.issue=45&rft.spage=eabo0869&rft.epage=eabo0869&rft.pages=eabo0869-eabo0869&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abo0869&rft_dat=%3Cproquest_pubme%3E2735877192%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-48cbcea59d626d1b3b77fc897305319d65e286fbf86d3e6d2ba0bccf4d1ac8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2735877192&rft_id=info:pmid/36367937&rfr_iscdi=true