Loading…

Study on the Crack Propagation of Stiff-Thin-Film-on-Soft-Substrate Structures under Biaxial Loading

With the development of flexible electronic technology, lately, there has been an increase in demand for flexible electronic devices based on soft polymer-substrate metal film structures in challenging applications. These soft polymer-substrate metal film structures must tolerate bending, folding, s...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-10, Vol.15 (21), p.7421
Main Authors: Li, Jun, Li, Linan, Li, Chuanwei, Wang, Zhiyong, Wang, Shibin, Xue, Xiuli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the development of flexible electronic technology, lately, there has been an increase in demand for flexible electronic devices based on soft polymer-substrate metal film structures in challenging applications. These soft polymer-substrate metal film structures must tolerate bending, folding, stretching, and even deformation into any shape without failing to be used successfully. As a result, research into the fracture behavior of soft polymer-substrate metal film structures is essential. The purpose of this study was to investigate how fractures develop in Cr film attached to a polyimide (PI) substrate under biaxial stress. A fracture development model was built to determine the fracture propagation law of soft polymer-substrate metal film structures under biaxial stress. Experiments and finite element methods were applied to verify the correctness of the model. The theoretical analysis and finite element simulation results showed that fractures appeared initially at the perimeter of the film and then propagated to the center under biaxial stress. The theoretical and experimental results indicated that the crack propagation direction was related to the ratio of biaxial loading, which became progressively parallel to the direction of small loading as the biaxial loading ratio increased. The theoretical results were in line with the experiment results, which could be used as a preliminary step for further research on the fracture behavior of film-substrate structures.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15217421