Loading…

A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions

To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral perid...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-11, Vol.15 (21), p.7762
Main Authors: Han, Junzhao, Yu, Hao, Pan, Jun, Chen, Rong, Chen, Wenhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73
cites cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73
container_end_page
container_issue 21
container_start_page 7762
container_title Materials
container_volume 15
creator Han, Junzhao
Yu, Hao
Pan, Jun
Chen, Rong
Chen, Wenhua
description To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.
doi_str_mv 10.3390/ma15217762
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745741230</galeid><sourcerecordid>A745741230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhhdRbKm98RcEvBFh23xuNjfC6cGjhYpCex9ykskxZTepSVbsvzfLKX5lLjLMPPNmMtN1rwm-YEzhy9kQQYmUA33WnRKlhp4ozp__5Z9056Xc43YYIyNVL7sTNjRjgp92txt0W02F_soUcOgr5OAeo5mDRbsJfi7ZTGhnajgsgD4nBxPyKaNtitXYikx06AqiC_GwxlyoIcXyqnvhzVTg_Ok-6-52H-62n_qbLx-vt5ub3nJKa2-459jAuKdkIECpJU4Kp8woMZbWCr83XCksHHEMOyOdlXy0xHsCijnJzrr3R9mHZT-DsxBr61Y_5DCb_KiTCfrfTAzf9CH90GoQw8hXgbdPAjl9X6BUPYdiYZpMhLQUTSUT46CkwA198x96n5Yc2-9Wig8K05E06uJIHcwEOkSf2ru2mYM20BTBhxbfSC4kJ5Stsu-OBTanUjL4390TrNf16j_rZb8AyU6VRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734690281</pqid></control><display><type>article</type><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</creator><creatorcontrib>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</creatorcontrib><description>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15217762</identifier><identifier>PMID: 36363354</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; Analysis ; Bending fatigue ; Bending stresses ; Crack initiation ; Crack propagation ; Cracking (fracturing) ; Errors ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue testing machines ; Finite element analysis ; Fractures ; Load transfer ; Maintenance costs ; Materials ; Mechanics ; Partial differential equations ; Propagation ; Repeated loading ; Tooth root</subject><ispartof>Materials, 2022-11, Vol.15 (21), p.7762</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</citedby><cites>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</cites><orcidid>0000-0001-5816-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734690281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734690281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Han, Junzhao</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><title>Materials</title><description>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</description><subject>Adaptive algorithms</subject><subject>Analysis</subject><subject>Bending fatigue</subject><subject>Bending stresses</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Errors</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Finite element analysis</subject><subject>Fractures</subject><subject>Load transfer</subject><subject>Maintenance costs</subject><subject>Materials</subject><subject>Mechanics</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Repeated loading</subject><subject>Tooth root</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1rFTEQhhdRbKm98RcEvBFh23xuNjfC6cGjhYpCex9ykskxZTepSVbsvzfLKX5lLjLMPPNmMtN1rwm-YEzhy9kQQYmUA33WnRKlhp4ozp__5Z9056Xc43YYIyNVL7sTNjRjgp92txt0W02F_soUcOgr5OAeo5mDRbsJfi7ZTGhnajgsgD4nBxPyKaNtitXYikx06AqiC_GwxlyoIcXyqnvhzVTg_Ok-6-52H-62n_qbLx-vt5ub3nJKa2-459jAuKdkIECpJU4Kp8woMZbWCr83XCksHHEMOyOdlXy0xHsCijnJzrr3R9mHZT-DsxBr61Y_5DCb_KiTCfrfTAzf9CH90GoQw8hXgbdPAjl9X6BUPYdiYZpMhLQUTSUT46CkwA198x96n5Yc2-9Wig8K05E06uJIHcwEOkSf2ru2mYM20BTBhxbfSC4kJ5Stsu-OBTanUjL4390TrNf16j_rZb8AyU6VRA</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Han, Junzhao</creator><creator>Yu, Hao</creator><creator>Pan, Jun</creator><creator>Chen, Rong</creator><creator>Chen, Wenhua</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5816-0013</orcidid></search><sort><creationdate>20221103</creationdate><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><author>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Analysis</topic><topic>Bending fatigue</topic><topic>Bending stresses</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Errors</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Finite element analysis</topic><topic>Fractures</topic><topic>Load transfer</topic><topic>Maintenance costs</topic><topic>Materials</topic><topic>Mechanics</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Repeated loading</topic><topic>Tooth root</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junzhao</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junzhao</au><au>Yu, Hao</au><au>Pan, Jun</au><au>Chen, Rong</au><au>Chen, Wenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</atitle><jtitle>Materials</jtitle><date>2022-11-03</date><risdate>2022</risdate><volume>15</volume><issue>21</issue><spage>7762</spage><pages>7762-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363354</pmid><doi>10.3390/ma15217762</doi><orcidid>https://orcid.org/0000-0001-5816-0013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-11, Vol.15 (21), p.7762
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656847
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive algorithms
Analysis
Bending fatigue
Bending stresses
Crack initiation
Crack propagation
Cracking (fracturing)
Errors
Fatigue
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue testing machines
Finite element analysis
Fractures
Load transfer
Maintenance costs
Materials
Mechanics
Partial differential equations
Propagation
Repeated loading
Tooth root
title A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20State-Based%20Peridynamic%20Flexural%20Fatigue%20Model%20for%20Contact%20and%20Bending%20Conditions&rft.jtitle=Materials&rft.au=Han,%20Junzhao&rft.date=2022-11-03&rft.volume=15&rft.issue=21&rft.spage=7762&rft.pages=7762-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15217762&rft_dat=%3Cgale_pubme%3EA745741230%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734690281&rft_id=info:pmid/36363354&rft_galeid=A745741230&rfr_iscdi=true