Loading…
A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions
To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral perid...
Saved in:
Published in: | Materials 2022-11, Vol.15 (21), p.7762 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73 |
container_end_page | |
container_issue | 21 |
container_start_page | 7762 |
container_title | Materials |
container_volume | 15 |
creator | Han, Junzhao Yu, Hao Pan, Jun Chen, Rong Chen, Wenhua |
description | To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results. |
doi_str_mv | 10.3390/ma15217762 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745741230</galeid><sourcerecordid>A745741230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</originalsourceid><addsrcrecordid>eNpdkV1rFTEQhhdRbKm98RcEvBFh23xuNjfC6cGjhYpCex9ykskxZTepSVbsvzfLKX5lLjLMPPNmMtN1rwm-YEzhy9kQQYmUA33WnRKlhp4ozp__5Z9056Xc43YYIyNVL7sTNjRjgp92txt0W02F_soUcOgr5OAeo5mDRbsJfi7ZTGhnajgsgD4nBxPyKaNtitXYikx06AqiC_GwxlyoIcXyqnvhzVTg_Ok-6-52H-62n_qbLx-vt5ub3nJKa2-459jAuKdkIECpJU4Kp8woMZbWCr83XCksHHEMOyOdlXy0xHsCijnJzrr3R9mHZT-DsxBr61Y_5DCb_KiTCfrfTAzf9CH90GoQw8hXgbdPAjl9X6BUPYdiYZpMhLQUTSUT46CkwA198x96n5Yc2-9Wig8K05E06uJIHcwEOkSf2ru2mYM20BTBhxbfSC4kJ5Stsu-OBTanUjL4390TrNf16j_rZb8AyU6VRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734690281</pqid></control><display><type>article</type><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</creator><creatorcontrib>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</creatorcontrib><description>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15217762</identifier><identifier>PMID: 36363354</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; Analysis ; Bending fatigue ; Bending stresses ; Crack initiation ; Crack propagation ; Cracking (fracturing) ; Errors ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue testing machines ; Finite element analysis ; Fractures ; Load transfer ; Maintenance costs ; Materials ; Mechanics ; Partial differential equations ; Propagation ; Repeated loading ; Tooth root</subject><ispartof>Materials, 2022-11, Vol.15 (21), p.7762</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</citedby><cites>FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</cites><orcidid>0000-0001-5816-0013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734690281/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734690281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Han, Junzhao</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><title>Materials</title><description>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</description><subject>Adaptive algorithms</subject><subject>Analysis</subject><subject>Bending fatigue</subject><subject>Bending stresses</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cracking (fracturing)</subject><subject>Errors</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Finite element analysis</subject><subject>Fractures</subject><subject>Load transfer</subject><subject>Maintenance costs</subject><subject>Materials</subject><subject>Mechanics</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Repeated loading</subject><subject>Tooth root</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkV1rFTEQhhdRbKm98RcEvBFh23xuNjfC6cGjhYpCex9ykskxZTepSVbsvzfLKX5lLjLMPPNmMtN1rwm-YEzhy9kQQYmUA33WnRKlhp4ozp__5Z9056Xc43YYIyNVL7sTNjRjgp92txt0W02F_soUcOgr5OAeo5mDRbsJfi7ZTGhnajgsgD4nBxPyKaNtitXYikx06AqiC_GwxlyoIcXyqnvhzVTg_Ok-6-52H-62n_qbLx-vt5ub3nJKa2-459jAuKdkIECpJU4Kp8woMZbWCr83XCksHHEMOyOdlXy0xHsCijnJzrr3R9mHZT-DsxBr61Y_5DCb_KiTCfrfTAzf9CH90GoQw8hXgbdPAjl9X6BUPYdiYZpMhLQUTSUT46CkwA198x96n5Yc2-9Wig8K05E06uJIHcwEOkSf2ru2mYM20BTBhxbfSC4kJ5Stsu-OBTanUjL4390TrNf16j_rZb8AyU6VRA</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Han, Junzhao</creator><creator>Yu, Hao</creator><creator>Pan, Jun</creator><creator>Chen, Rong</creator><creator>Chen, Wenhua</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5816-0013</orcidid></search><sort><creationdate>20221103</creationdate><title>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</title><author>Han, Junzhao ; Yu, Hao ; Pan, Jun ; Chen, Rong ; Chen, Wenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Analysis</topic><topic>Bending fatigue</topic><topic>Bending stresses</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cracking (fracturing)</topic><topic>Errors</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Finite element analysis</topic><topic>Fractures</topic><topic>Load transfer</topic><topic>Maintenance costs</topic><topic>Materials</topic><topic>Mechanics</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Repeated loading</topic><topic>Tooth root</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Junzhao</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Pan, Jun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Junzhao</au><au>Yu, Hao</au><au>Pan, Jun</au><au>Chen, Rong</au><au>Chen, Wenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions</atitle><jtitle>Materials</jtitle><date>2022-11-03</date><risdate>2022</risdate><volume>15</volume><issue>21</issue><spage>7762</spage><pages>7762-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363354</pmid><doi>10.3390/ma15217762</doi><orcidid>https://orcid.org/0000-0001-5816-0013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-11, Vol.15 (21), p.7762 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9656847 |
source | Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adaptive algorithms Analysis Bending fatigue Bending stresses Crack initiation Crack propagation Cracking (fracturing) Errors Fatigue Fatigue cracks Fatigue failure Fatigue life Fatigue testing machines Finite element analysis Fractures Load transfer Maintenance costs Materials Mechanics Partial differential equations Propagation Repeated loading Tooth root |
title | A State-Based Peridynamic Flexural Fatigue Model for Contact and Bending Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20State-Based%20Peridynamic%20Flexural%20Fatigue%20Model%20for%20Contact%20and%20Bending%20Conditions&rft.jtitle=Materials&rft.au=Han,%20Junzhao&rft.date=2022-11-03&rft.volume=15&rft.issue=21&rft.spage=7762&rft.pages=7762-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15217762&rft_dat=%3Cgale_pubme%3EA745741230%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-a4f40ae8b2161e22c1d75d9a87007cc5fba49905d1d30da7dc748c1ff1e93d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734690281&rft_id=info:pmid/36363354&rft_galeid=A745741230&rfr_iscdi=true |