Loading…

Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study

Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition mo...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2022-10, Vol.14 (21), p.4600
Main Authors: Naghavi, Seyed Ataollah, Lin, Churun, Sun, Changning, Tamaddon, Maryam, Basiouny, Mariam, Garcia-Souto, Pilar, Taylor, Stephen, Hua, Jia, Li, Dichen, Wang, Ling, Liu, Chaozong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3
cites cdi_FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3
container_end_page
container_issue 21
container_start_page 4600
container_title Polymers
container_volume 14
creator Naghavi, Seyed Ataollah
Lin, Churun
Sun, Changning
Tamaddon, Maryam
Basiouny, Mariam
Garcia-Souto, Pilar
Taylor, Stephen
Hua, Jia
Li, Dichen
Wang, Ling
Liu, Chaozong
description Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants.
doi_str_mv 10.3390/polym14214600
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9657056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746439759</galeid><sourcerecordid>A746439759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3</originalsourceid><addsrcrecordid>eNptks9u1DAQxi0EolXpkbslLuWQYsf_Eg5IS7VtUYtYsXC2nGS86yqJ09gB7Y136BvyJDjqCliEfRjL8_u-0YwGoZeUnDNWkjeDb3cd5TnlkpAn6DgnimWcSfL0r_cROg3hjqTDhZRUPUdHTDIpRMmP0W4dRwgBr7cO2sb1G2z6Br_3PeDPEPw4ROd77C1ezVh26SJepaIQtzD-_PGw3McbiLPkbLVc3rzG125IvA8pGVx4ixd4bb5XM_DRN9DidZya3Qv0zJo2wOk-nqCvl8svF9fZ7aerDxeL26zmooyZMKWoiJA8lySnUNhKysqwwtBC5TUUrBLApTDWqkIVlBrCoFHMCEuEADDsBL179B2mqoOmhj6OptXD6Doz7rQ3Th9merfVG_9Nl1KoVDgZnO0NRn8_QYi6c6GGtjU9-CnoXDFRKKYIT-irf9A7P419am-muKKKK_WH2pgWtOutT3Xr2VQvFJeclUqUiTr_D5VuA52r0zCtS_8HguxRUKfRhxHs7x4p0fO66IN1Yb8AJzeySw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734717477</pqid></control><display><type>article</type><title>Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Naghavi, Seyed Ataollah ; Lin, Churun ; Sun, Changning ; Tamaddon, Maryam ; Basiouny, Mariam ; Garcia-Souto, Pilar ; Taylor, Stephen ; Hua, Jia ; Li, Dichen ; Wang, Ling ; Liu, Chaozong</creator><creatorcontrib>Naghavi, Seyed Ataollah ; Lin, Churun ; Sun, Changning ; Tamaddon, Maryam ; Basiouny, Mariam ; Garcia-Souto, Pilar ; Taylor, Stephen ; Hua, Jia ; Li, Dichen ; Wang, Ling ; Liu, Chaozong</creatorcontrib><description>Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14214600</identifier><identifier>PMID: 36365594</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Biocompatibility ; Biomedical materials ; Bone resorption ; Bones ; Clinical medicine ; Compression tests ; Density ; Design optimization ; Dynamic loads ; Finite element analysis ; Fused deposition modeling ; Hydroxyapatite ; Implants, Artificial ; Mechanical properties ; Orthopaedic implants ; Orthopedics ; Polyether ether ketones ; Prostheses ; Prosthesis ; Safety factors ; Simulation methods ; Stainless steel ; Stiffness ; Stress distribution ; Stress shielding ; Surgery ; Surgical implants ; Titanium alloys ; Titanium base alloys ; Transplants &amp; implants</subject><ispartof>Polymers, 2022-10, Vol.14 (21), p.4600</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3</citedby><cites>FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3</cites><orcidid>0000-0002-9854-4043 ; 0000-0003-3558-2058 ; 0000-0002-6111-8163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734717477/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734717477?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Naghavi, Seyed Ataollah</creatorcontrib><creatorcontrib>Lin, Churun</creatorcontrib><creatorcontrib>Sun, Changning</creatorcontrib><creatorcontrib>Tamaddon, Maryam</creatorcontrib><creatorcontrib>Basiouny, Mariam</creatorcontrib><creatorcontrib>Garcia-Souto, Pilar</creatorcontrib><creatorcontrib>Taylor, Stephen</creatorcontrib><creatorcontrib>Hua, Jia</creatorcontrib><creatorcontrib>Li, Dichen</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Liu, Chaozong</creatorcontrib><title>Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study</title><title>Polymers</title><description>Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants.</description><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone resorption</subject><subject>Bones</subject><subject>Clinical medicine</subject><subject>Compression tests</subject><subject>Density</subject><subject>Design optimization</subject><subject>Dynamic loads</subject><subject>Finite element analysis</subject><subject>Fused deposition modeling</subject><subject>Hydroxyapatite</subject><subject>Implants, Artificial</subject><subject>Mechanical properties</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Polyether ether ketones</subject><subject>Prostheses</subject><subject>Prosthesis</subject><subject>Safety factors</subject><subject>Simulation methods</subject><subject>Stainless steel</subject><subject>Stiffness</subject><subject>Stress distribution</subject><subject>Stress shielding</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transplants &amp; implants</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks9u1DAQxi0EolXpkbslLuWQYsf_Eg5IS7VtUYtYsXC2nGS86yqJ09gB7Y136BvyJDjqCliEfRjL8_u-0YwGoZeUnDNWkjeDb3cd5TnlkpAn6DgnimWcSfL0r_cROg3hjqTDhZRUPUdHTDIpRMmP0W4dRwgBr7cO2sb1G2z6Br_3PeDPEPw4ROd77C1ezVh26SJepaIQtzD-_PGw3McbiLPkbLVc3rzG125IvA8pGVx4ixd4bb5XM_DRN9DidZya3Qv0zJo2wOk-nqCvl8svF9fZ7aerDxeL26zmooyZMKWoiJA8lySnUNhKysqwwtBC5TUUrBLApTDWqkIVlBrCoFHMCEuEADDsBL179B2mqoOmhj6OptXD6Doz7rQ3Th9merfVG_9Nl1KoVDgZnO0NRn8_QYi6c6GGtjU9-CnoXDFRKKYIT-irf9A7P419am-muKKKK_WH2pgWtOutT3Xr2VQvFJeclUqUiTr_D5VuA52r0zCtS_8HguxRUKfRhxHs7x4p0fO66IN1Yb8AJzeySw</recordid><startdate>20221029</startdate><enddate>20221029</enddate><creator>Naghavi, Seyed Ataollah</creator><creator>Lin, Churun</creator><creator>Sun, Changning</creator><creator>Tamaddon, Maryam</creator><creator>Basiouny, Mariam</creator><creator>Garcia-Souto, Pilar</creator><creator>Taylor, Stephen</creator><creator>Hua, Jia</creator><creator>Li, Dichen</creator><creator>Wang, Ling</creator><creator>Liu, Chaozong</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9854-4043</orcidid><orcidid>https://orcid.org/0000-0003-3558-2058</orcidid><orcidid>https://orcid.org/0000-0002-6111-8163</orcidid></search><sort><creationdate>20221029</creationdate><title>Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study</title><author>Naghavi, Seyed Ataollah ; Lin, Churun ; Sun, Changning ; Tamaddon, Maryam ; Basiouny, Mariam ; Garcia-Souto, Pilar ; Taylor, Stephen ; Hua, Jia ; Li, Dichen ; Wang, Ling ; Liu, Chaozong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone resorption</topic><topic>Bones</topic><topic>Clinical medicine</topic><topic>Compression tests</topic><topic>Density</topic><topic>Design optimization</topic><topic>Dynamic loads</topic><topic>Finite element analysis</topic><topic>Fused deposition modeling</topic><topic>Hydroxyapatite</topic><topic>Implants, Artificial</topic><topic>Mechanical properties</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Polyether ether ketones</topic><topic>Prostheses</topic><topic>Prosthesis</topic><topic>Safety factors</topic><topic>Simulation methods</topic><topic>Stainless steel</topic><topic>Stiffness</topic><topic>Stress distribution</topic><topic>Stress shielding</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naghavi, Seyed Ataollah</creatorcontrib><creatorcontrib>Lin, Churun</creatorcontrib><creatorcontrib>Sun, Changning</creatorcontrib><creatorcontrib>Tamaddon, Maryam</creatorcontrib><creatorcontrib>Basiouny, Mariam</creatorcontrib><creatorcontrib>Garcia-Souto, Pilar</creatorcontrib><creatorcontrib>Taylor, Stephen</creatorcontrib><creatorcontrib>Hua, Jia</creatorcontrib><creatorcontrib>Li, Dichen</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Liu, Chaozong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naghavi, Seyed Ataollah</au><au>Lin, Churun</au><au>Sun, Changning</au><au>Tamaddon, Maryam</au><au>Basiouny, Mariam</au><au>Garcia-Souto, Pilar</au><au>Taylor, Stephen</au><au>Hua, Jia</au><au>Li, Dichen</au><au>Wang, Ling</au><au>Liu, Chaozong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study</atitle><jtitle>Polymers</jtitle><date>2022-10-29</date><risdate>2022</risdate><volume>14</volume><issue>21</issue><spage>4600</spage><pages>4600-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36365594</pmid><doi>10.3390/polym14214600</doi><orcidid>https://orcid.org/0000-0002-9854-4043</orcidid><orcidid>https://orcid.org/0000-0003-3558-2058</orcidid><orcidid>https://orcid.org/0000-0002-6111-8163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-10, Vol.14 (21), p.4600
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9657056
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Analysis
Biocompatibility
Biomedical materials
Bone resorption
Bones
Clinical medicine
Compression tests
Density
Design optimization
Dynamic loads
Finite element analysis
Fused deposition modeling
Hydroxyapatite
Implants, Artificial
Mechanical properties
Orthopaedic implants
Orthopedics
Polyether ether ketones
Prostheses
Prosthesis
Safety factors
Simulation methods
Stainless steel
Stiffness
Stress distribution
Stress shielding
Surgery
Surgical implants
Titanium alloys
Titanium base alloys
Transplants & implants
title Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20Shielding%20and%20Bone%20Resorption%20of%20Press-Fit%20Polyether%E2%80%93Ether%E2%80%93Ketone%20(PEEK)%20Hip%20Prosthesis:%20A%20Sawbone%20Model%20Study&rft.jtitle=Polymers&rft.au=Naghavi,%20Seyed%20Ataollah&rft.date=2022-10-29&rft.volume=14&rft.issue=21&rft.spage=4600&rft.pages=4600-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14214600&rft_dat=%3Cgale_pubme%3EA746439759%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-5a95b056426021e8fb66ba38a1872ce83b5e465aff787811a03ed73a5f055eea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734717477&rft_id=info:pmid/36365594&rft_galeid=A746439759&rfr_iscdi=true