Loading…

Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models

Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched pro...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (46), p.1-11
Main Authors: Beumer, Joep, Bauzá-Martinez, Julia, Veth, Tim S., Geurts, Veerle, Boot, Charelle, Gilliam-Vigh, Hannah, Poulsen, Steen S., Knop, Filip K., Wu, Wei, Clevers, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched proteases are associated with endocrinopathies. Due to the relative rarity of EECs and a paucity of in vitro models, intestinal prohormone processing remains challenging to assess. Here, human gut organoids in which EECs can efficiently be induced are subjected to CRISPR-Cas9–mediated modification of EEC-expressed endopeptidase and exopeptidase genes. We employ mass spectrometry–based analyses to monitor peptide processing and identify glucagon production in intestinal EECs, stimulated upon bone morphogenic protein (BMP) signaling. We map the substrates and products of major EECs endo- and exopeptidases. Our studies provide a comprehensive description of peptide hormones produced by human EECs and define the roles of specific proteases in their generation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2212057119