Loading…
From living systematic reviews to meta-analytical research domains
Because of the rapidly increasing number of randomised controlled trials (RCTs) and meta-analyses in many fields, there is an urgent need to step up from meta-analyses to higher levels of aggregation of outcomes of RCTs. Network meta-analyses and umbrella reviews allow higher levels of aggregation o...
Saved in:
Published in: | BMJ mental health 2022-07, Vol.25 (4), p.145-147 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because of the rapidly increasing number of randomised controlled trials (RCTs) and meta-analyses in many fields, there is an urgent need to step up from meta-analyses to higher levels of aggregation of outcomes of RCTs. Network meta-analyses and umbrella reviews allow higher levels of aggregation of RCT outcomes, but cannot adequately cover the evidence for a whole field. The ‘Meta-Analytic Research Domain’ (MARD) may be a new methodology to aggregate RCT data of a whole field. A MARD is a living systematic review of a research domain that cannot be covered by one PICO. For example, a MARD of psychotherapy for depression covers all RCTs comparing the effects of all types of psychotherapy to control conditions, to each other, to pharmacotherapy and combined treatment. It also covers all RCTs comparing treatment formats, the effects in different target groups, subtypes of depression and secondary outcomes. Although the time and resources needed to build a MARD are considerable, they offer many advantages, including a comprehensive and consistent overview of a research field and important meta-analytic studies that cannot be conducted with conventional methods. MARDs are a promising method to step up the aggregation of RCTs to a next level and it is highly relevant to work out the methods of this approach in a more detailed way. |
---|---|
ISSN: | 1362-0347 1468-960X 2755-9734 |
DOI: | 10.1136/ebmental-2022-300509 |