Loading…
Inferring bona fide Differentially Expressed Genes and Their Variants Associated with Vitamin K Deficiency Using a Systems Genetics Approach
Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease p...
Saved in:
Published in: | Genes 2022-11, Vol.13 (11), p.2078 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease phenotypes,
., myocardial infarction, renal failure and prostate cancer. We sought to ask whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs) in the biogenesis of VK deficiencies. |
---|---|
ISSN: | 2073-4425 2073-4425 |
DOI: | 10.3390/genes13112078 |