Loading…

Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites

Nanostructured hexagonal rare-earth orthoferrites (h-RfeO3, R = Sc, Y, Tb-Lu) are well known as a highly effective base for visible-light-driven heterojunction photocatalysts. However, their application is limited by metastability, leading to difficulties in synthesis due to the irreversible transfo...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-11, Vol.15 (22), p.8273
Main Authors: Tikhanova, Sofia, Seroglazova, Anna, Chebanenko, Maria, Nevedomskiy, Vladimir, Popkov, Vadim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanostructured hexagonal rare-earth orthoferrites (h-RfeO3, R = Sc, Y, Tb-Lu) are well known as a highly effective base for visible-light-driven heterojunction photocatalysts. However, their application is limited by metastability, leading to difficulties in synthesis due to the irreversible transformation to a stable orthorhombic structure. In this work, we report on a simple route to the stabilization of h-YbFeO3 nanocrystals by the synthesis of multiphase nanocomposites with titania additives. The new I-type heterojunction nanocomposites of o-YbFeO3/h-YbFeO3/r-TiO2 were obtained by the glycine–nitrate solution combustion method with subsequent heat treatment of the products. An increase in the mole fraction of the h-YbFeO3 phase in nanocomposites was found with the titanium addition, indicating its stabilizing effect via limiting mass transfer over heat treatment. The complex physicochemical analysis shows multiple contacts of individual nanocrystals of o-YbFeO3 (44.4–50.6 nm), h-YbFeO3 (7.5–17.6 nm), and rutile r-TiO2 (~5 nm), confirming the presence of the heterojunction structure in the obtained nanocomposite. The photocatalytic activity of h-YbFeO3/o-YbFeO3/r-TiO2 nanocomposites was evaluated by the photo-Fenton degradation of the methyl violet under visible light (λ ≥ 400 nm). It was demonstrated that the addition of 5 mol.% of TiO2 stabilizes h-YbFeO3, which allowed us to achieve a 41.5 mol% fraction, followed by a three-time increase in the photodecomposition rate constant up to 0.0160 min−1.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15228273