Loading…

Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications

To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As on...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-11, Vol.23 (22), p.14252
Main Authors: Hwang, Seansoo, Lee, HyeonGyeong, Jeong, Yu-Gyeong, Choi, Chanhee, Hwang, Inhyeok, Song, SeungHyeon, Nam, Sang Yong, Lee, Jin Hong, Kim, Kihyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383
cites cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383
container_end_page
container_issue 22
container_start_page 14252
container_title International journal of molecular sciences
container_volume 23
creator Hwang, Seansoo
Lee, HyeonGyeong
Jeong, Yu-Gyeong
Choi, Chanhee
Hwang, Inhyeok
Song, SeungHyeon
Nam, Sang Yong
Lee, Jin Hong
Kim, Kihyun
description To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.
doi_str_mv 10.3390/ijms232214252
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739443005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoflSPXmXB89pskv3IRZDSaqGiBz2HZHe2pmSTNdkK9S_4p420il48zYQ8eSbMi9B5hq8o5XisV10glJCMkZzsoeNYSYpxUe7_6o_QSQgrjCOY80N0RAtGcUmKY_Tx6MymA59MDdSDj4cBknvolJcWQjJxdpDaartMZmtbD9pZafQ7NMmDX0qr6_Hcum0X2a53Qcf3rfPJf97oApNMwJjkpu-NruWXOJyig1aaAGe7OkLPs-nT5C5dPNzOJzeLtGZZPqQSN6TEhNVNkYEESnPClQRcQVlVRc5YyxXNlFIQIcYrpQjmmawaCVmpaEVH6Hrr7deqg6YGO3hpRO91J_1GOKnF3xurX8TSvQlecEYJjYLLncC71zWEQazc2sfNBEFKyllcLs4jlW6p2rsQPLQ_EzIsvrITf7KL_MXvb_3Q32HRT2lumVI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739443005</pqid></control><display><type>article</type><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</creator><creatorcontrib>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</creatorcontrib><description>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232214252</identifier><identifier>PMID: 36430726</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Carbon ; Chemical energy ; Composite materials ; Electric Conductivity ; Electrolytes ; Electrolytic cells ; Energy ; Energy conversion ; Fillers ; Fuel cells ; Global warming ; Graphene ; Humidity ; Hydrocarbons ; Mechanical properties ; Membranes ; Polymers ; Polymers - chemistry ; Production costs ; Proton exchange membrane fuel cells ; Protons ; Review ; Silicon Dioxide ; Structural engineering ; Sulfonic acid ; Thermal stability</subject><ispartof>International journal of molecular sciences, 2022-11, Vol.23 (22), p.14252</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</citedby><cites>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</cites><orcidid>0000-0001-6800-5543 ; 0000-0002-6056-2318 ; 0000-0001-8302-4937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739443005/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739443005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36430726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Seansoo</creatorcontrib><creatorcontrib>Lee, HyeonGyeong</creatorcontrib><creatorcontrib>Jeong, Yu-Gyeong</creatorcontrib><creatorcontrib>Choi, Chanhee</creatorcontrib><creatorcontrib>Hwang, Inhyeok</creatorcontrib><creatorcontrib>Song, SeungHyeon</creatorcontrib><creatorcontrib>Nam, Sang Yong</creatorcontrib><creatorcontrib>Lee, Jin Hong</creatorcontrib><creatorcontrib>Kim, Kihyun</creatorcontrib><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</description><subject>Acids</subject><subject>Carbon</subject><subject>Chemical energy</subject><subject>Composite materials</subject><subject>Electric Conductivity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Fillers</subject><subject>Fuel cells</subject><subject>Global warming</subject><subject>Graphene</subject><subject>Humidity</subject><subject>Hydrocarbons</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Production costs</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Review</subject><subject>Silicon Dioxide</subject><subject>Structural engineering</subject><subject>Sulfonic acid</subject><subject>Thermal stability</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1LAzEQhoMoflSPXmXB89pskv3IRZDSaqGiBz2HZHe2pmSTNdkK9S_4p420il48zYQ8eSbMi9B5hq8o5XisV10glJCMkZzsoeNYSYpxUe7_6o_QSQgrjCOY80N0RAtGcUmKY_Tx6MymA59MDdSDj4cBknvolJcWQjJxdpDaartMZmtbD9pZafQ7NMmDX0qr6_Hcum0X2a53Qcf3rfPJf97oApNMwJjkpu-NruWXOJyig1aaAGe7OkLPs-nT5C5dPNzOJzeLtGZZPqQSN6TEhNVNkYEESnPClQRcQVlVRc5YyxXNlFIQIcYrpQjmmawaCVmpaEVH6Hrr7deqg6YGO3hpRO91J_1GOKnF3xurX8TSvQlecEYJjYLLncC71zWEQazc2sfNBEFKyllcLs4jlW6p2rsQPLQ_EzIsvrITf7KL_MXvb_3Q32HRT2lumVI</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Hwang, Seansoo</creator><creator>Lee, HyeonGyeong</creator><creator>Jeong, Yu-Gyeong</creator><creator>Choi, Chanhee</creator><creator>Hwang, Inhyeok</creator><creator>Song, SeungHyeon</creator><creator>Nam, Sang Yong</creator><creator>Lee, Jin Hong</creator><creator>Kim, Kihyun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6800-5543</orcidid><orcidid>https://orcid.org/0000-0002-6056-2318</orcidid><orcidid>https://orcid.org/0000-0001-8302-4937</orcidid></search><sort><creationdate>20221117</creationdate><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><author>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Carbon</topic><topic>Chemical energy</topic><topic>Composite materials</topic><topic>Electric Conductivity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Fillers</topic><topic>Fuel cells</topic><topic>Global warming</topic><topic>Graphene</topic><topic>Humidity</topic><topic>Hydrocarbons</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Production costs</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Review</topic><topic>Silicon Dioxide</topic><topic>Structural engineering</topic><topic>Sulfonic acid</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Seansoo</creatorcontrib><creatorcontrib>Lee, HyeonGyeong</creatorcontrib><creatorcontrib>Jeong, Yu-Gyeong</creatorcontrib><creatorcontrib>Choi, Chanhee</creatorcontrib><creatorcontrib>Hwang, Inhyeok</creatorcontrib><creatorcontrib>Song, SeungHyeon</creatorcontrib><creatorcontrib>Nam, Sang Yong</creatorcontrib><creatorcontrib>Lee, Jin Hong</creatorcontrib><creatorcontrib>Kim, Kihyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Seansoo</au><au>Lee, HyeonGyeong</au><au>Jeong, Yu-Gyeong</au><au>Choi, Chanhee</au><au>Hwang, Inhyeok</au><au>Song, SeungHyeon</au><au>Nam, Sang Yong</au><au>Lee, Jin Hong</au><au>Kim, Kihyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-11-17</date><risdate>2022</risdate><volume>23</volume><issue>22</issue><spage>14252</spage><pages>14252-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36430726</pmid><doi>10.3390/ijms232214252</doi><orcidid>https://orcid.org/0000-0001-6800-5543</orcidid><orcidid>https://orcid.org/0000-0002-6056-2318</orcidid><orcidid>https://orcid.org/0000-0001-8302-4937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-11, Vol.23 (22), p.14252
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694323
source Publicly Available Content Database; PubMed Central
subjects Acids
Carbon
Chemical energy
Composite materials
Electric Conductivity
Electrolytes
Electrolytic cells
Energy
Energy conversion
Fillers
Fuel cells
Global warming
Graphene
Humidity
Hydrocarbons
Mechanical properties
Membranes
Polymers
Polymers - chemistry
Production costs
Proton exchange membrane fuel cells
Protons
Review
Silicon Dioxide
Structural engineering
Sulfonic acid
Thermal stability
title Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20Electrolyte%20Membranes%20Containing%20Functionalized%20Organic/Inorganic%20Composite%20for%20Polymer%20Electrolyte%20Membrane%20Fuel%20Cell%20Applications&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hwang,%20Seansoo&rft.date=2022-11-17&rft.volume=23&rft.issue=22&rft.spage=14252&rft.pages=14252-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232214252&rft_dat=%3Cproquest_pubme%3E2739443005%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739443005&rft_id=info:pmid/36430726&rfr_iscdi=true