Loading…
Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As on...
Saved in:
Published in: | International journal of molecular sciences 2022-11, Vol.23 (22), p.14252 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383 |
container_end_page | |
container_issue | 22 |
container_start_page | 14252 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Hwang, Seansoo Lee, HyeonGyeong Jeong, Yu-Gyeong Choi, Chanhee Hwang, Inhyeok Song, SeungHyeon Nam, Sang Yong Lee, Jin Hong Kim, Kihyun |
description | To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers. |
doi_str_mv | 10.3390/ijms232214252 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739443005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoflSPXmXB89pskv3IRZDSaqGiBz2HZHe2pmSTNdkK9S_4p420il48zYQ8eSbMi9B5hq8o5XisV10glJCMkZzsoeNYSYpxUe7_6o_QSQgrjCOY80N0RAtGcUmKY_Tx6MymA59MDdSDj4cBknvolJcWQjJxdpDaartMZmtbD9pZafQ7NMmDX0qr6_Hcum0X2a53Qcf3rfPJf97oApNMwJjkpu-NruWXOJyig1aaAGe7OkLPs-nT5C5dPNzOJzeLtGZZPqQSN6TEhNVNkYEESnPClQRcQVlVRc5YyxXNlFIQIcYrpQjmmawaCVmpaEVH6Hrr7deqg6YGO3hpRO91J_1GOKnF3xurX8TSvQlecEYJjYLLncC71zWEQazc2sfNBEFKyllcLs4jlW6p2rsQPLQ_EzIsvrITf7KL_MXvb_3Q32HRT2lumVI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739443005</pqid></control><display><type>article</type><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</creator><creatorcontrib>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</creatorcontrib><description>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232214252</identifier><identifier>PMID: 36430726</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Carbon ; Chemical energy ; Composite materials ; Electric Conductivity ; Electrolytes ; Electrolytic cells ; Energy ; Energy conversion ; Fillers ; Fuel cells ; Global warming ; Graphene ; Humidity ; Hydrocarbons ; Mechanical properties ; Membranes ; Polymers ; Polymers - chemistry ; Production costs ; Proton exchange membrane fuel cells ; Protons ; Review ; Silicon Dioxide ; Structural engineering ; Sulfonic acid ; Thermal stability</subject><ispartof>International journal of molecular sciences, 2022-11, Vol.23 (22), p.14252</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</citedby><cites>FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</cites><orcidid>0000-0001-6800-5543 ; 0000-0002-6056-2318 ; 0000-0001-8302-4937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739443005/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739443005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36430726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Seansoo</creatorcontrib><creatorcontrib>Lee, HyeonGyeong</creatorcontrib><creatorcontrib>Jeong, Yu-Gyeong</creatorcontrib><creatorcontrib>Choi, Chanhee</creatorcontrib><creatorcontrib>Hwang, Inhyeok</creatorcontrib><creatorcontrib>Song, SeungHyeon</creatorcontrib><creatorcontrib>Nam, Sang Yong</creatorcontrib><creatorcontrib>Lee, Jin Hong</creatorcontrib><creatorcontrib>Kim, Kihyun</creatorcontrib><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</description><subject>Acids</subject><subject>Carbon</subject><subject>Chemical energy</subject><subject>Composite materials</subject><subject>Electric Conductivity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Fillers</subject><subject>Fuel cells</subject><subject>Global warming</subject><subject>Graphene</subject><subject>Humidity</subject><subject>Hydrocarbons</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Production costs</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Review</subject><subject>Silicon Dioxide</subject><subject>Structural engineering</subject><subject>Sulfonic acid</subject><subject>Thermal stability</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU1LAzEQhoMoflSPXmXB89pskv3IRZDSaqGiBz2HZHe2pmSTNdkK9S_4p420il48zYQ8eSbMi9B5hq8o5XisV10glJCMkZzsoeNYSYpxUe7_6o_QSQgrjCOY80N0RAtGcUmKY_Tx6MymA59MDdSDj4cBknvolJcWQjJxdpDaartMZmtbD9pZafQ7NMmDX0qr6_Hcum0X2a53Qcf3rfPJf97oApNMwJjkpu-NruWXOJyig1aaAGe7OkLPs-nT5C5dPNzOJzeLtGZZPqQSN6TEhNVNkYEESnPClQRcQVlVRc5YyxXNlFIQIcYrpQjmmawaCVmpaEVH6Hrr7deqg6YGO3hpRO91J_1GOKnF3xurX8TSvQlecEYJjYLLncC71zWEQazc2sfNBEFKyllcLs4jlW6p2rsQPLQ_EzIsvrITf7KL_MXvb_3Q32HRT2lumVI</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Hwang, Seansoo</creator><creator>Lee, HyeonGyeong</creator><creator>Jeong, Yu-Gyeong</creator><creator>Choi, Chanhee</creator><creator>Hwang, Inhyeok</creator><creator>Song, SeungHyeon</creator><creator>Nam, Sang Yong</creator><creator>Lee, Jin Hong</creator><creator>Kim, Kihyun</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6800-5543</orcidid><orcidid>https://orcid.org/0000-0002-6056-2318</orcidid><orcidid>https://orcid.org/0000-0001-8302-4937</orcidid></search><sort><creationdate>20221117</creationdate><title>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</title><author>Hwang, Seansoo ; Lee, HyeonGyeong ; Jeong, Yu-Gyeong ; Choi, Chanhee ; Hwang, Inhyeok ; Song, SeungHyeon ; Nam, Sang Yong ; Lee, Jin Hong ; Kim, Kihyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Carbon</topic><topic>Chemical energy</topic><topic>Composite materials</topic><topic>Electric Conductivity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Fillers</topic><topic>Fuel cells</topic><topic>Global warming</topic><topic>Graphene</topic><topic>Humidity</topic><topic>Hydrocarbons</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Production costs</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Review</topic><topic>Silicon Dioxide</topic><topic>Structural engineering</topic><topic>Sulfonic acid</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Seansoo</creatorcontrib><creatorcontrib>Lee, HyeonGyeong</creatorcontrib><creatorcontrib>Jeong, Yu-Gyeong</creatorcontrib><creatorcontrib>Choi, Chanhee</creatorcontrib><creatorcontrib>Hwang, Inhyeok</creatorcontrib><creatorcontrib>Song, SeungHyeon</creatorcontrib><creatorcontrib>Nam, Sang Yong</creatorcontrib><creatorcontrib>Lee, Jin Hong</creatorcontrib><creatorcontrib>Kim, Kihyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Seansoo</au><au>Lee, HyeonGyeong</au><au>Jeong, Yu-Gyeong</au><au>Choi, Chanhee</au><au>Hwang, Inhyeok</au><au>Song, SeungHyeon</au><au>Nam, Sang Yong</au><au>Lee, Jin Hong</au><au>Kim, Kihyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-11-17</date><risdate>2022</risdate><volume>23</volume><issue>22</issue><spage>14252</spage><pages>14252-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36430726</pmid><doi>10.3390/ijms232214252</doi><orcidid>https://orcid.org/0000-0001-6800-5543</orcidid><orcidid>https://orcid.org/0000-0002-6056-2318</orcidid><orcidid>https://orcid.org/0000-0001-8302-4937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-11, Vol.23 (22), p.14252 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694323 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acids Carbon Chemical energy Composite materials Electric Conductivity Electrolytes Electrolytic cells Energy Energy conversion Fillers Fuel cells Global warming Graphene Humidity Hydrocarbons Mechanical properties Membranes Polymers Polymers - chemistry Production costs Proton exchange membrane fuel cells Protons Review Silicon Dioxide Structural engineering Sulfonic acid Thermal stability |
title | Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20Electrolyte%20Membranes%20Containing%20Functionalized%20Organic/Inorganic%20Composite%20for%20Polymer%20Electrolyte%20Membrane%20Fuel%20Cell%20Applications&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hwang,%20Seansoo&rft.date=2022-11-17&rft.volume=23&rft.issue=22&rft.spage=14252&rft.pages=14252-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232214252&rft_dat=%3Cproquest_pubme%3E2739443005%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-a0d27024cd61eae33529bae08e7886544f9b31bbbe024498bb2091a8dae17b383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739443005&rft_id=info:pmid/36430726&rfr_iscdi=true |