Loading…

Study on the Densification of Osmium by Experiment and First Principle Calculations

The sintering of osmium is critical for the preparation of raw material targets for film coating, which is the main application area of osmium. In order to get a better understanding of the intrinsic mechanism of densification of osmium, a serial study on the sintering behavior of osmium has been ma...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-11, Vol.15 (22), p.8011
Main Authors: Yang, Yunfei, Sun, Junhao, Liu, Wei, Hu, Peng, Zhang, Ruimin, Liu, Hexiong, Gao, Junyan, Wang, Jinshu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sintering of osmium is critical for the preparation of raw material targets for film coating, which is the main application area of osmium. In order to get a better understanding of the intrinsic mechanism of densification of osmium, a serial study on the sintering behavior of osmium has been made in this study. By the master sintering curve (MSC) and constant heating rate (CHR) method, the sintering activation energy of nanosized osmium is evaluated to be about 340 kJ/mol, which is higher than most other metals. The density-functional theory calculation indicates the higher energy barrier of the surface atom and vacancy migration and lacking migration tunnel of inner point vacancies. For example, the diffusion of osmium atoms on the surface of particles is mainly limited by Os (1010), which has an energy barrier as high as 1.14 eV, that is higher than the W atom on W (110) of 0.99 eV. The vacancy migration energy barrier inside osmium's grains is higher than 3.0 eV, while that of W is only 1.7 eV. This means that it is more difficult for osmium to achieve a high density compared with W, which is consistent with the experimental results. Accordingly, the proposed strategy provides a new opportunity to design a sintering process for target fabrication with excellent properties for various applications.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15228011