Loading…
Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by ma...
Saved in:
Published in: | International journal of molecular sciences 2022-11, Vol.23 (22), p.14158 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303 |
container_end_page | |
container_issue | 22 |
container_start_page | 14158 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Kumar, Anuj Won, So-Yeon Sood, Ankur Choi, So-Yeon Singhmar, Ritu Bhaskar, Rakesh Kumar, Vineet Zo, Sun Mi Han, Sung-Soo |
description | Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels. |
doi_str_mv | 10.3390/ijms232214158 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739440760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMozji6dCsBN25K86pHNoI047QwD9B2XaSS291pU0mZpBz6F_i3TTsPZmZ1LtzvHu7hIPSWko-cS_LJ7sbEOGNU0Lp7ho6pYKwipGmfP5iP0KuUdoQUsJYv0RFvBCcNb4_R31W0k4PqEvJ1iL_A4OV-iPYgJoYNuIS_g_XrEHXZXdu8xRfB5zFE61zwNgNeOLXHyht8FtW0BQ_4UvkwOZXBQU643OIfYZ3_M0sVDV7ZlGYoxptCR5Vt8K_Ri7VyCd7c6gn6-fV0tVhW51dn3xZfzitd8uVKUmVqOXRt1wyNMFpDx-tOCk610mqoDZhB8FZRoZhgzWBaGASra0mNFowTfoI-3_hO8zCC0eBzVK6foh1V3PdB2f7xxtttvwl_etnIjsquGHy4NYjh9wwp96NNGpxTHsKcetYKUpOO1aKg75-guzBHX-IVikshSNscPqpuKB1DShHW989Q0h8q7h9VXPh3DxPc03ed8n8vvKVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739440760</pqid></control><display><type>article</type><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</creator><creatorcontrib>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</creatorcontrib><description>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232214158</identifier><identifier>PMID: 36430637</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alginic acid ; Bentonite ; Biocompatibility ; Biomedical materials ; Biopolymers ; Cellular structure ; Clay ; Crosslinking ; Graphene ; Graphite ; Hydrogels ; Hydrogels - chemistry ; Mechanical properties ; Microenvironments ; Moisture content ; Montmorillonite ; Platelets (materials) ; Polyacrylamide ; Polymers ; Polyvinyl Alcohol - chemistry ; Regeneration (physiology) ; Reproducibility ; Sodium alginate ; Tissue engineering ; Water - chemistry ; Water content</subject><ispartof>International journal of molecular sciences, 2022-11, Vol.23 (22), p.14158</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</citedby><cites>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</cites><orcidid>0000-0001-6434-875X ; 0000-0002-0181-6197 ; 0000-0003-0095-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739440760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739440760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36430637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Won, So-Yeon</creatorcontrib><creatorcontrib>Sood, Ankur</creatorcontrib><creatorcontrib>Choi, So-Yeon</creatorcontrib><creatorcontrib>Singhmar, Ritu</creatorcontrib><creatorcontrib>Bhaskar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Zo, Sun Mi</creatorcontrib><creatorcontrib>Han, Sung-Soo</creatorcontrib><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</description><subject>Alginic acid</subject><subject>Bentonite</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellular structure</subject><subject>Clay</subject><subject>Crosslinking</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mechanical properties</subject><subject>Microenvironments</subject><subject>Moisture content</subject><subject>Montmorillonite</subject><subject>Platelets (materials)</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Regeneration (physiology)</subject><subject>Reproducibility</subject><subject>Sodium alginate</subject><subject>Tissue engineering</subject><subject>Water - chemistry</subject><subject>Water content</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUuLFDEUhYMozji6dCsBN25K86pHNoI047QwD9B2XaSS291pU0mZpBz6F_i3TTsPZmZ1LtzvHu7hIPSWko-cS_LJ7sbEOGNU0Lp7ho6pYKwipGmfP5iP0KuUdoQUsJYv0RFvBCcNb4_R31W0k4PqEvJ1iL_A4OV-iPYgJoYNuIS_g_XrEHXZXdu8xRfB5zFE61zwNgNeOLXHyht8FtW0BQ_4UvkwOZXBQU643OIfYZ3_M0sVDV7ZlGYoxptCR5Vt8K_Ri7VyCd7c6gn6-fV0tVhW51dn3xZfzitd8uVKUmVqOXRt1wyNMFpDx-tOCk610mqoDZhB8FZRoZhgzWBaGASra0mNFowTfoI-3_hO8zCC0eBzVK6foh1V3PdB2f7xxtttvwl_etnIjsquGHy4NYjh9wwp96NNGpxTHsKcetYKUpOO1aKg75-guzBHX-IVikshSNscPqpuKB1DShHW989Q0h8q7h9VXPh3DxPc03ed8n8vvKVU</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Kumar, Anuj</creator><creator>Won, So-Yeon</creator><creator>Sood, Ankur</creator><creator>Choi, So-Yeon</creator><creator>Singhmar, Ritu</creator><creator>Bhaskar, Rakesh</creator><creator>Kumar, Vineet</creator><creator>Zo, Sun Mi</creator><creator>Han, Sung-Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6434-875X</orcidid><orcidid>https://orcid.org/0000-0002-0181-6197</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid></search><sort><creationdate>20221116</creationdate><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><author>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginic acid</topic><topic>Bentonite</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellular structure</topic><topic>Clay</topic><topic>Crosslinking</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mechanical properties</topic><topic>Microenvironments</topic><topic>Moisture content</topic><topic>Montmorillonite</topic><topic>Platelets (materials)</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Regeneration (physiology)</topic><topic>Reproducibility</topic><topic>Sodium alginate</topic><topic>Tissue engineering</topic><topic>Water - chemistry</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Won, So-Yeon</creatorcontrib><creatorcontrib>Sood, Ankur</creatorcontrib><creatorcontrib>Choi, So-Yeon</creatorcontrib><creatorcontrib>Singhmar, Ritu</creatorcontrib><creatorcontrib>Bhaskar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Zo, Sun Mi</creatorcontrib><creatorcontrib>Han, Sung-Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Won, So-Yeon</au><au>Sood, Ankur</au><au>Choi, So-Yeon</au><au>Singhmar, Ritu</au><au>Bhaskar, Rakesh</au><au>Kumar, Vineet</au><au>Zo, Sun Mi</au><au>Han, Sung-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>23</volume><issue>22</issue><spage>14158</spage><pages>14158-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36430637</pmid><doi>10.3390/ijms232214158</doi><orcidid>https://orcid.org/0000-0001-6434-875X</orcidid><orcidid>https://orcid.org/0000-0002-0181-6197</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-11, Vol.23 (22), p.14158 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698198 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Alginic acid Bentonite Biocompatibility Biomedical materials Biopolymers Cellular structure Clay Crosslinking Graphene Graphite Hydrogels Hydrogels - chemistry Mechanical properties Microenvironments Moisture content Montmorillonite Platelets (materials) Polyacrylamide Polymers Polyvinyl Alcohol - chemistry Regeneration (physiology) Reproducibility Sodium alginate Tissue engineering Water - chemistry Water content |
title | Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Networked%20Hybrid%20Hydrogels%20Reinforced%20with%20Montmorillonite%20Clay%20and%20Graphene%20Nanoplatelets%20for%20Soft%20and%20Hard%20Tissue%20Regeneration&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kumar,%20Anuj&rft.date=2022-11-16&rft.volume=23&rft.issue=22&rft.spage=14158&rft.pages=14158-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232214158&rft_dat=%3Cproquest_pubme%3E2739440760%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739440760&rft_id=info:pmid/36430637&rfr_iscdi=true |