Loading…

Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration

Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by ma...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-11, Vol.23 (22), p.14158
Main Authors: Kumar, Anuj, Won, So-Yeon, Sood, Ankur, Choi, So-Yeon, Singhmar, Ritu, Bhaskar, Rakesh, Kumar, Vineet, Zo, Sun Mi, Han, Sung-Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303
cites cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303
container_end_page
container_issue 22
container_start_page 14158
container_title International journal of molecular sciences
container_volume 23
creator Kumar, Anuj
Won, So-Yeon
Sood, Ankur
Choi, So-Yeon
Singhmar, Ritu
Bhaskar, Rakesh
Kumar, Vineet
Zo, Sun Mi
Han, Sung-Soo
description Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.
doi_str_mv 10.3390/ijms232214158
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739440760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</originalsourceid><addsrcrecordid>eNpdkUuLFDEUhYMozji6dCsBN25K86pHNoI047QwD9B2XaSS291pU0mZpBz6F_i3TTsPZmZ1LtzvHu7hIPSWko-cS_LJ7sbEOGNU0Lp7ho6pYKwipGmfP5iP0KuUdoQUsJYv0RFvBCcNb4_R31W0k4PqEvJ1iL_A4OV-iPYgJoYNuIS_g_XrEHXZXdu8xRfB5zFE61zwNgNeOLXHyht8FtW0BQ_4UvkwOZXBQU643OIfYZ3_M0sVDV7ZlGYoxptCR5Vt8K_Ri7VyCd7c6gn6-fV0tVhW51dn3xZfzitd8uVKUmVqOXRt1wyNMFpDx-tOCk610mqoDZhB8FZRoZhgzWBaGASra0mNFowTfoI-3_hO8zCC0eBzVK6foh1V3PdB2f7xxtttvwl_etnIjsquGHy4NYjh9wwp96NNGpxTHsKcetYKUpOO1aKg75-guzBHX-IVikshSNscPqpuKB1DShHW989Q0h8q7h9VXPh3DxPc03ed8n8vvKVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739440760</pqid></control><display><type>article</type><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</creator><creatorcontrib>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</creatorcontrib><description>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232214158</identifier><identifier>PMID: 36430637</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alginic acid ; Bentonite ; Biocompatibility ; Biomedical materials ; Biopolymers ; Cellular structure ; Clay ; Crosslinking ; Graphene ; Graphite ; Hydrogels ; Hydrogels - chemistry ; Mechanical properties ; Microenvironments ; Moisture content ; Montmorillonite ; Platelets (materials) ; Polyacrylamide ; Polymers ; Polyvinyl Alcohol - chemistry ; Regeneration (physiology) ; Reproducibility ; Sodium alginate ; Tissue engineering ; Water - chemistry ; Water content</subject><ispartof>International journal of molecular sciences, 2022-11, Vol.23 (22), p.14158</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</citedby><cites>FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</cites><orcidid>0000-0001-6434-875X ; 0000-0002-0181-6197 ; 0000-0003-0095-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739440760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739440760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36430637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Won, So-Yeon</creatorcontrib><creatorcontrib>Sood, Ankur</creatorcontrib><creatorcontrib>Choi, So-Yeon</creatorcontrib><creatorcontrib>Singhmar, Ritu</creatorcontrib><creatorcontrib>Bhaskar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Zo, Sun Mi</creatorcontrib><creatorcontrib>Han, Sung-Soo</creatorcontrib><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</description><subject>Alginic acid</subject><subject>Bentonite</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Cellular structure</subject><subject>Clay</subject><subject>Crosslinking</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mechanical properties</subject><subject>Microenvironments</subject><subject>Moisture content</subject><subject>Montmorillonite</subject><subject>Platelets (materials)</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Polyvinyl Alcohol - chemistry</subject><subject>Regeneration (physiology)</subject><subject>Reproducibility</subject><subject>Sodium alginate</subject><subject>Tissue engineering</subject><subject>Water - chemistry</subject><subject>Water content</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUuLFDEUhYMozji6dCsBN25K86pHNoI047QwD9B2XaSS291pU0mZpBz6F_i3TTsPZmZ1LtzvHu7hIPSWko-cS_LJ7sbEOGNU0Lp7ho6pYKwipGmfP5iP0KuUdoQUsJYv0RFvBCcNb4_R31W0k4PqEvJ1iL_A4OV-iPYgJoYNuIS_g_XrEHXZXdu8xRfB5zFE61zwNgNeOLXHyht8FtW0BQ_4UvkwOZXBQU643OIfYZ3_M0sVDV7ZlGYoxptCR5Vt8K_Ri7VyCd7c6gn6-fV0tVhW51dn3xZfzitd8uVKUmVqOXRt1wyNMFpDx-tOCk610mqoDZhB8FZRoZhgzWBaGASra0mNFowTfoI-3_hO8zCC0eBzVK6foh1V3PdB2f7xxtttvwl_etnIjsquGHy4NYjh9wwp96NNGpxTHsKcetYKUpOO1aKg75-guzBHX-IVikshSNscPqpuKB1DShHW989Q0h8q7h9VXPh3DxPc03ed8n8vvKVU</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Kumar, Anuj</creator><creator>Won, So-Yeon</creator><creator>Sood, Ankur</creator><creator>Choi, So-Yeon</creator><creator>Singhmar, Ritu</creator><creator>Bhaskar, Rakesh</creator><creator>Kumar, Vineet</creator><creator>Zo, Sun Mi</creator><creator>Han, Sung-Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6434-875X</orcidid><orcidid>https://orcid.org/0000-0002-0181-6197</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid></search><sort><creationdate>20221116</creationdate><title>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</title><author>Kumar, Anuj ; Won, So-Yeon ; Sood, Ankur ; Choi, So-Yeon ; Singhmar, Ritu ; Bhaskar, Rakesh ; Kumar, Vineet ; Zo, Sun Mi ; Han, Sung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alginic acid</topic><topic>Bentonite</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Cellular structure</topic><topic>Clay</topic><topic>Crosslinking</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mechanical properties</topic><topic>Microenvironments</topic><topic>Moisture content</topic><topic>Montmorillonite</topic><topic>Platelets (materials)</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Polyvinyl Alcohol - chemistry</topic><topic>Regeneration (physiology)</topic><topic>Reproducibility</topic><topic>Sodium alginate</topic><topic>Tissue engineering</topic><topic>Water - chemistry</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Won, So-Yeon</creatorcontrib><creatorcontrib>Sood, Ankur</creatorcontrib><creatorcontrib>Choi, So-Yeon</creatorcontrib><creatorcontrib>Singhmar, Ritu</creatorcontrib><creatorcontrib>Bhaskar, Rakesh</creatorcontrib><creatorcontrib>Kumar, Vineet</creatorcontrib><creatorcontrib>Zo, Sun Mi</creatorcontrib><creatorcontrib>Han, Sung-Soo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Won, So-Yeon</au><au>Sood, Ankur</au><au>Choi, So-Yeon</au><au>Singhmar, Ritu</au><au>Bhaskar, Rakesh</au><au>Kumar, Vineet</au><au>Zo, Sun Mi</au><au>Han, Sung-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>23</volume><issue>22</issue><spage>14158</spage><pages>14158-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36430637</pmid><doi>10.3390/ijms232214158</doi><orcidid>https://orcid.org/0000-0001-6434-875X</orcidid><orcidid>https://orcid.org/0000-0002-0181-6197</orcidid><orcidid>https://orcid.org/0000-0003-0095-1976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-11, Vol.23 (22), p.14158
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698198
source PubMed (Medline); Publicly Available Content Database
subjects Alginic acid
Bentonite
Biocompatibility
Biomedical materials
Biopolymers
Cellular structure
Clay
Crosslinking
Graphene
Graphite
Hydrogels
Hydrogels - chemistry
Mechanical properties
Microenvironments
Moisture content
Montmorillonite
Platelets (materials)
Polyacrylamide
Polymers
Polyvinyl Alcohol - chemistry
Regeneration (physiology)
Reproducibility
Sodium alginate
Tissue engineering
Water - chemistry
Water content
title Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Networked%20Hybrid%20Hydrogels%20Reinforced%20with%20Montmorillonite%20Clay%20and%20Graphene%20Nanoplatelets%20for%20Soft%20and%20Hard%20Tissue%20Regeneration&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kumar,%20Anuj&rft.date=2022-11-16&rft.volume=23&rft.issue=22&rft.spage=14158&rft.pages=14158-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232214158&rft_dat=%3Cproquest_pubme%3E2739440760%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-91ad59b8786b64dcce83589431cacab5dedb437a14a2426bd7eb425591dc42303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739440760&rft_id=info:pmid/36430637&rfr_iscdi=true