Loading…
scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data
Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementati...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2022-11, Vol.38 (23), p.5322-5325 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3 |
container_end_page | 5325 |
container_issue | 23 |
container_start_page | 5322 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 38 |
creator | Gu, Haocheng Cheng, Hao Ma, Anjun Li, Yang Wang, Juexin Xu, Dong Ma, Qin |
description | Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementation of scGNN was relatively time-consuming and its performance could still be optimized.
The implementation of scGNN 2.0 is significantly faster than scGNN thanks to a simplified close-loop architecture. For all eight datasets, cell clustering performance was increased by 85.02% on average in terms of adjusted rand index, and the imputation Median L1 Error was reduced by 67.94% on average. With the built-in visualizations, users can quickly assess the imputation and cell clustering results, compare against benchmarks and interpret the cell-cell interaction. The expanded input and output formats also pave the way for custom workflows that integrate scGNN 2.0 with other scRNA-Seq toolkits on both Python and R platforms.
scGNN 2.0 is implemented in Python (as of version 3.8) with the source code available at https://github.com/OSU-BMBL/scGNN2.0.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac684 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725442379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3</originalsourceid><addsrcrecordid>eNpVUclKBDEQDaK4_4Lk6KU1ay8eBBE3kBHUe0ynK2O0uzMmacW_N-I46OkV1FuqeAgdUHJEScOPW-fdaH0YdHImHrdJm7IWa2ib8rIqRE3p-momfAvtxPhCCJFElptoi5dMkqoW2-gpmqvZDLMjcoI1nge9eMYjTEH3GdKHD684ed_jHIXdsJhSzvMj1mOHTT_FBMGNc-wtjhl7KAz0Pb6fnRUP8IY7nfQe2rC6j7C_xF30eHnxeH5d3N5d3Zyf3RZGUJEKC0RYzSpSQ8Xyxa1uqqYGShsuaw22lhZ0C6KjkvGK2caazrZMUk47gI7votMf28XUDtAZGFP-QS2CG3T4VF479X8zumc19--qqSiRkmSDw6VB8G8TxKQGF7-_0SP4KSpWMSlEzm4ytfyhmuBjDGBXMZSo73bU_3bUsp0sPPh75Er2Wwf_Av-pkwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725442379</pqid></control><display><type>article</type><title>scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data</title><source>Open Access: PubMed Central</source><source>Oxford University Press Open Access</source><creator>Gu, Haocheng ; Cheng, Hao ; Ma, Anjun ; Li, Yang ; Wang, Juexin ; Xu, Dong ; Ma, Qin</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Gu, Haocheng ; Cheng, Hao ; Ma, Anjun ; Li, Yang ; Wang, Juexin ; Xu, Dong ; Ma, Qin ; Birol, Inanc</creatorcontrib><description>Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementation of scGNN was relatively time-consuming and its performance could still be optimized.
The implementation of scGNN 2.0 is significantly faster than scGNN thanks to a simplified close-loop architecture. For all eight datasets, cell clustering performance was increased by 85.02% on average in terms of adjusted rand index, and the imputation Median L1 Error was reduced by 67.94% on average. With the built-in visualizations, users can quickly assess the imputation and cell clustering results, compare against benchmarks and interpret the cell-cell interaction. The expanded input and output formats also pave the way for custom workflows that integrate scGNN 2.0 with other scRNA-Seq toolkits on both Python and R platforms.
scGNN 2.0 is implemented in Python (as of version 3.8) with the source code available at https://github.com/OSU-BMBL/scGNN2.0.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac684</identifier><identifier>PMID: 36250784</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Note ; Cluster Analysis ; Gene Expression Profiling - methods ; Neural Networks, Computer ; RNA-Seq ; Sequence Analysis, RNA - methods ; Single-Cell Analysis ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2022-11, Vol.38 (23), p.5322-5325</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3</citedby><cites>FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3</cites><orcidid>0000-0002-2260-4310 ; 0000-0002-3264-8392 ; 0000-0002-4809-0514 ; 0000-0001-6269-398X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710550/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710550/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36250784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Gu, Haocheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ma, Anjun</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wang, Juexin</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Ma, Qin</creatorcontrib><title>scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementation of scGNN was relatively time-consuming and its performance could still be optimized.
The implementation of scGNN 2.0 is significantly faster than scGNN thanks to a simplified close-loop architecture. For all eight datasets, cell clustering performance was increased by 85.02% on average in terms of adjusted rand index, and the imputation Median L1 Error was reduced by 67.94% on average. With the built-in visualizations, users can quickly assess the imputation and cell clustering results, compare against benchmarks and interpret the cell-cell interaction. The expanded input and output formats also pave the way for custom workflows that integrate scGNN 2.0 with other scRNA-Seq toolkits on both Python and R platforms.
scGNN 2.0 is implemented in Python (as of version 3.8) with the source code available at https://github.com/OSU-BMBL/scGNN2.0.
Supplementary data are available at Bioinformatics online.</description><subject>Applications Note</subject><subject>Cluster Analysis</subject><subject>Gene Expression Profiling - methods</subject><subject>Neural Networks, Computer</subject><subject>RNA-Seq</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Single-Cell Analysis</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUclKBDEQDaK4_4Lk6KU1ay8eBBE3kBHUe0ynK2O0uzMmacW_N-I46OkV1FuqeAgdUHJEScOPW-fdaH0YdHImHrdJm7IWa2ib8rIqRE3p-momfAvtxPhCCJFElptoi5dMkqoW2-gpmqvZDLMjcoI1nge9eMYjTEH3GdKHD684ed_jHIXdsJhSzvMj1mOHTT_FBMGNc-wtjhl7KAz0Pb6fnRUP8IY7nfQe2rC6j7C_xF30eHnxeH5d3N5d3Zyf3RZGUJEKC0RYzSpSQ8Xyxa1uqqYGShsuaw22lhZ0C6KjkvGK2caazrZMUk47gI7votMf28XUDtAZGFP-QS2CG3T4VF479X8zumc19--qqSiRkmSDw6VB8G8TxKQGF7-_0SP4KSpWMSlEzm4ytfyhmuBjDGBXMZSo73bU_3bUsp0sPPh75Er2Wwf_Av-pkwM</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Gu, Haocheng</creator><creator>Cheng, Hao</creator><creator>Ma, Anjun</creator><creator>Li, Yang</creator><creator>Wang, Juexin</creator><creator>Xu, Dong</creator><creator>Ma, Qin</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2260-4310</orcidid><orcidid>https://orcid.org/0000-0002-3264-8392</orcidid><orcidid>https://orcid.org/0000-0002-4809-0514</orcidid><orcidid>https://orcid.org/0000-0001-6269-398X</orcidid></search><sort><creationdate>20221130</creationdate><title>scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data</title><author>Gu, Haocheng ; Cheng, Hao ; Ma, Anjun ; Li, Yang ; Wang, Juexin ; Xu, Dong ; Ma, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications Note</topic><topic>Cluster Analysis</topic><topic>Gene Expression Profiling - methods</topic><topic>Neural Networks, Computer</topic><topic>RNA-Seq</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Single-Cell Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Haocheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ma, Anjun</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Wang, Juexin</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Ma, Qin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Haocheng</au><au>Cheng, Hao</au><au>Ma, Anjun</au><au>Li, Yang</au><au>Wang, Juexin</au><au>Xu, Dong</au><au>Ma, Qin</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-11-30</date><risdate>2022</risdate><volume>38</volume><issue>23</issue><spage>5322</spage><epage>5325</epage><pages>5322-5325</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Gene expression imputation has been an essential step of the single-cell RNA-Seq data analysis workflow. Among several deep-learning methods, the debut of scGNN gained substantial recognition in 2021 for its superior performance and the ability to produce a cell-cell graph. However, the implementation of scGNN was relatively time-consuming and its performance could still be optimized.
The implementation of scGNN 2.0 is significantly faster than scGNN thanks to a simplified close-loop architecture. For all eight datasets, cell clustering performance was increased by 85.02% on average in terms of adjusted rand index, and the imputation Median L1 Error was reduced by 67.94% on average. With the built-in visualizations, users can quickly assess the imputation and cell clustering results, compare against benchmarks and interpret the cell-cell interaction. The expanded input and output formats also pave the way for custom workflows that integrate scGNN 2.0 with other scRNA-Seq toolkits on both Python and R platforms.
scGNN 2.0 is implemented in Python (as of version 3.8) with the source code available at https://github.com/OSU-BMBL/scGNN2.0.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36250784</pmid><doi>10.1093/bioinformatics/btac684</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2260-4310</orcidid><orcidid>https://orcid.org/0000-0002-3264-8392</orcidid><orcidid>https://orcid.org/0000-0002-4809-0514</orcidid><orcidid>https://orcid.org/0000-0001-6269-398X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2022-11, Vol.38 (23), p.5322-5325 |
issn | 1367-4803 1367-4811 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710550 |
source | Open Access: PubMed Central; Oxford University Press Open Access |
subjects | Applications Note Cluster Analysis Gene Expression Profiling - methods Neural Networks, Computer RNA-Seq Sequence Analysis, RNA - methods Single-Cell Analysis Software |
title | scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scGNN%202.0:%20a%20graph%20neural%20network%20tool%20for%20imputation%20and%20clustering%20of%20single-cell%20RNA-Seq%20data&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Gu,%20Haocheng&rft.date=2022-11-30&rft.volume=38&rft.issue=23&rft.spage=5322&rft.epage=5325&rft.pages=5322-5325&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btac684&rft_dat=%3Cproquest_pubme%3E2725442379%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-fe04fa2708e72803ba9798e119358aef85feabe4d152372f9fcdfb25131deed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725442379&rft_id=info:pmid/36250784&rfr_iscdi=true |