Loading…

Cadmium stress causes differential effects on growth and the secretion of carbon-degrading enzymes in four mycorrhizal basidiomycetes

We hypothesised that cadmium exposure would hinder growth and secretion of carbon-degrading enzymes by mycorrhizal fungi, and that this would vary according to their tolerance to cadmium stress. The enzymes measured were β-Glucosidase, β-Xylosidase, β-D-cellubiosidase, N-acetyl-β-Glucosaminidase in...

Full description

Saved in:
Bibliographic Details
Published in:Mycoscience 2021/03/20, Vol.62(2), pp.132-136
Main Authors: Gilka Rocha Vasconcelos da Silva, Oliveira, Vinicius Henrique De, Tibbett, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We hypothesised that cadmium exposure would hinder growth and secretion of carbon-degrading enzymes by mycorrhizal fungi, and that this would vary according to their tolerance to cadmium stress. The enzymes measured were β-Glucosidase, β-Xylosidase, β-D-cellubiosidase, N-acetyl-β-Glucosaminidase in three strains of ectomycorrhizal fungi Hebeloma subsaponaceum, Scleroderma sp., Hebeloma sp. and a feremycorrhizal fungus Austroboletus occidentalis. Fungi were subjected to cadmium stress for 28 d (in modified Melin-Norkrans liquid medium). The results showed unanticipated differential response of enzyme activities among the fungal species, including potential hormesis effects. Austroboletus occidentalis showed an increase in enzyme activity under cadmium stress.
ISSN:1340-3540
1618-2545
DOI:10.47371/mycosci.2020.12.002