Loading…

The kinase PLK1 promotes the development of Kras / Tp53 -mutant lung adenocarcinoma through transcriptional activation of the receptor RET

Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tum...

Full description

Saved in:
Bibliographic Details
Published in:Science signaling 2022-10, Vol.15 (754), p.eabj4009-eabj4009
Main Authors: Kong, Yifan, Allison, Derek B, Zhang, Qiongsi, He, Daheng, Li, Yuntong, Mao, Fengyi, Li, Chaohao, Li, Zhiguo, Zhang, Yanquan, Wang, Jianlin, Wang, Chi, Brainson, Christine F, Liu, Xiaoqi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRAS -driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
ISSN:1945-0877
1937-9145
DOI:10.1126/scisignal.abj4009