Loading…

Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE

The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-11, Vol.15 (23), p.8409
Main Authors: Przezdziecka, Ewa, Paradowska, Karolina M, Jakiela, Rafal, Kryvyi, Serhii, Zielony, Eunika, Placzek-Popko, Ewa, Lisowski, Wojciech, Sybilski, Piotr, Jarosz, Dawid, Adhikari, Abinash, Stachowicz, Marcin, Kozanecki, Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863
cites cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863
container_end_page
container_issue 23
container_start_page 8409
container_title Materials
container_volume 15
creator Przezdziecka, Ewa
Paradowska, Karolina M
Jakiela, Rafal
Kryvyi, Serhii
Zielony, Eunika
Placzek-Popko, Ewa
Lisowski, Wojciech
Sybilski, Piotr
Jarosz, Dawid
Adhikari, Abinash
Stachowicz, Marcin
Kozanecki, Adrian
description The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.
doi_str_mv 10.3390/ma15238409
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9741464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748556126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhQdRsNRufIKAGxFi5z8ZF4KWWoXWCurGzTBJJjUlnakzjbZv4NpH9Emc0uLf3dx7uYfDdw8AhwieEiJgd6YQwySlUOyAFhKCx0hQuvtr3gcd76cwFCEoxaIFune2Vi5SpohurYk325NBn-8fy9FkOT67z6KBs28mylbR6LJ_APZKVXvd2fY2eLzqP_Su4-F4cNO7GMY5SckiRhxqpRVhGJdCk1CQpEokgU4oTXShaMGx0BlDPGcKFjxlhaZFCRHWOuWkDc43vvMmm-ki12bhVC3nrpopt5JWVfLvxVTPcmJfpUgoopwGg-OtgbMvjfYLOat8rutaGW0bL3HCAlSCGQrSo3_SqW2cCe8FFU0Z4wiviU42qtxZ750uv2EQlOv85U_-5AtBiXY6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748556126</pqid></control><display><type>article</type><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</creator><creatorcontrib>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</creatorcontrib><description>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15238409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloying ; Alloys ; Antimony ; Compressive properties ; Energy gap ; Lasers ; Magnesium ; Molecular beam epitaxy ; Radiation ; Raman spectroscopy ; Sapphire ; Substrates ; Thin films ; X ray photoelectron spectroscopy ; X-rays ; Zinc oxide</subject><ispartof>Materials, 2022-11, Vol.15 (23), p.8409</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</citedby><cites>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</cites><orcidid>0000-0001-8162-8016 ; 0000-0001-9355-9089 ; 0000-0003-0382-1819 ; 0000-0002-9768-0860 ; 0000-0003-1676-3638 ; 0000-0001-8724-6844 ; 0000-0002-6023-1412 ; 0000-0002-4984-1519 ; 0000-0003-3202-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748556126/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748556126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Przezdziecka, Ewa</creatorcontrib><creatorcontrib>Paradowska, Karolina M</creatorcontrib><creatorcontrib>Jakiela, Rafal</creatorcontrib><creatorcontrib>Kryvyi, Serhii</creatorcontrib><creatorcontrib>Zielony, Eunika</creatorcontrib><creatorcontrib>Placzek-Popko, Ewa</creatorcontrib><creatorcontrib>Lisowski, Wojciech</creatorcontrib><creatorcontrib>Sybilski, Piotr</creatorcontrib><creatorcontrib>Jarosz, Dawid</creatorcontrib><creatorcontrib>Adhikari, Abinash</creatorcontrib><creatorcontrib>Stachowicz, Marcin</creatorcontrib><creatorcontrib>Kozanecki, Adrian</creatorcontrib><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><title>Materials</title><description>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Antimony</subject><subject>Compressive properties</subject><subject>Energy gap</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Molecular beam epitaxy</subject><subject>Radiation</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Substrates</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-rays</subject><subject>Zinc oxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkM1Kw0AUhQdRsNRufIKAGxFi5z8ZF4KWWoXWCurGzTBJJjUlnakzjbZv4NpH9Emc0uLf3dx7uYfDdw8AhwieEiJgd6YQwySlUOyAFhKCx0hQuvtr3gcd76cwFCEoxaIFune2Vi5SpohurYk325NBn-8fy9FkOT67z6KBs28mylbR6LJ_APZKVXvd2fY2eLzqP_Su4-F4cNO7GMY5SckiRhxqpRVhGJdCk1CQpEokgU4oTXShaMGx0BlDPGcKFjxlhaZFCRHWOuWkDc43vvMmm-ki12bhVC3nrpopt5JWVfLvxVTPcmJfpUgoopwGg-OtgbMvjfYLOat8rutaGW0bL3HCAlSCGQrSo3_SqW2cCe8FFU0Z4wiviU42qtxZ750uv2EQlOv85U_-5AtBiXY6</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Przezdziecka, Ewa</creator><creator>Paradowska, Karolina M</creator><creator>Jakiela, Rafal</creator><creator>Kryvyi, Serhii</creator><creator>Zielony, Eunika</creator><creator>Placzek-Popko, Ewa</creator><creator>Lisowski, Wojciech</creator><creator>Sybilski, Piotr</creator><creator>Jarosz, Dawid</creator><creator>Adhikari, Abinash</creator><creator>Stachowicz, Marcin</creator><creator>Kozanecki, Adrian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8162-8016</orcidid><orcidid>https://orcid.org/0000-0001-9355-9089</orcidid><orcidid>https://orcid.org/0000-0003-0382-1819</orcidid><orcidid>https://orcid.org/0000-0002-9768-0860</orcidid><orcidid>https://orcid.org/0000-0003-1676-3638</orcidid><orcidid>https://orcid.org/0000-0001-8724-6844</orcidid><orcidid>https://orcid.org/0000-0002-6023-1412</orcidid><orcidid>https://orcid.org/0000-0002-4984-1519</orcidid><orcidid>https://orcid.org/0000-0003-3202-3154</orcidid></search><sort><creationdate>20221125</creationdate><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><author>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Antimony</topic><topic>Compressive properties</topic><topic>Energy gap</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Molecular beam epitaxy</topic><topic>Radiation</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Substrates</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-rays</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Przezdziecka, Ewa</creatorcontrib><creatorcontrib>Paradowska, Karolina M</creatorcontrib><creatorcontrib>Jakiela, Rafal</creatorcontrib><creatorcontrib>Kryvyi, Serhii</creatorcontrib><creatorcontrib>Zielony, Eunika</creatorcontrib><creatorcontrib>Placzek-Popko, Ewa</creatorcontrib><creatorcontrib>Lisowski, Wojciech</creatorcontrib><creatorcontrib>Sybilski, Piotr</creatorcontrib><creatorcontrib>Jarosz, Dawid</creatorcontrib><creatorcontrib>Adhikari, Abinash</creatorcontrib><creatorcontrib>Stachowicz, Marcin</creatorcontrib><creatorcontrib>Kozanecki, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Przezdziecka, Ewa</au><au>Paradowska, Karolina M</au><au>Jakiela, Rafal</au><au>Kryvyi, Serhii</au><au>Zielony, Eunika</au><au>Placzek-Popko, Ewa</au><au>Lisowski, Wojciech</au><au>Sybilski, Piotr</au><au>Jarosz, Dawid</au><au>Adhikari, Abinash</au><au>Stachowicz, Marcin</au><au>Kozanecki, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</atitle><jtitle>Materials</jtitle><date>2022-11-25</date><risdate>2022</risdate><volume>15</volume><issue>23</issue><spage>8409</spage><pages>8409-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15238409</doi><orcidid>https://orcid.org/0000-0001-8162-8016</orcidid><orcidid>https://orcid.org/0000-0001-9355-9089</orcidid><orcidid>https://orcid.org/0000-0003-0382-1819</orcidid><orcidid>https://orcid.org/0000-0002-9768-0860</orcidid><orcidid>https://orcid.org/0000-0003-1676-3638</orcidid><orcidid>https://orcid.org/0000-0001-8724-6844</orcidid><orcidid>https://orcid.org/0000-0002-6023-1412</orcidid><orcidid>https://orcid.org/0000-0002-4984-1519</orcidid><orcidid>https://orcid.org/0000-0003-3202-3154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-11, Vol.15 (23), p.8409
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9741464
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloying
Alloys
Antimony
Compressive properties
Energy gap
Lasers
Magnesium
Molecular beam epitaxy
Radiation
Raman spectroscopy
Sapphire
Substrates
Thin films
X ray photoelectron spectroscopy
X-rays
Zinc oxide
title Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20and%20Non-Polar%20Zn1%E2%88%92xMgxO:Sb%20Grown%20by%20MBE&rft.jtitle=Materials&rft.au=Przezdziecka,%20Ewa&rft.date=2022-11-25&rft.volume=15&rft.issue=23&rft.spage=8409&rft.pages=8409-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15238409&rft_dat=%3Cproquest_pubme%3E2748556126%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748556126&rft_id=info:pmid/&rfr_iscdi=true