Loading…
Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE
The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on...
Saved in:
Published in: | Materials 2022-11, Vol.15 (23), p.8409 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863 |
container_end_page | |
container_issue | 23 |
container_start_page | 8409 |
container_title | Materials |
container_volume | 15 |
creator | Przezdziecka, Ewa Paradowska, Karolina M Jakiela, Rafal Kryvyi, Serhii Zielony, Eunika Placzek-Popko, Ewa Lisowski, Wojciech Sybilski, Piotr Jarosz, Dawid Adhikari, Abinash Stachowicz, Marcin Kozanecki, Adrian |
description | The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers. |
doi_str_mv | 10.3390/ma15238409 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9741464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748556126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</originalsourceid><addsrcrecordid>eNpdkM1Kw0AUhQdRsNRufIKAGxFi5z8ZF4KWWoXWCurGzTBJJjUlnakzjbZv4NpH9Emc0uLf3dx7uYfDdw8AhwieEiJgd6YQwySlUOyAFhKCx0hQuvtr3gcd76cwFCEoxaIFune2Vi5SpohurYk325NBn-8fy9FkOT67z6KBs28mylbR6LJ_APZKVXvd2fY2eLzqP_Su4-F4cNO7GMY5SckiRhxqpRVhGJdCk1CQpEokgU4oTXShaMGx0BlDPGcKFjxlhaZFCRHWOuWkDc43vvMmm-ki12bhVC3nrpopt5JWVfLvxVTPcmJfpUgoopwGg-OtgbMvjfYLOat8rutaGW0bL3HCAlSCGQrSo3_SqW2cCe8FFU0Z4wiviU42qtxZ750uv2EQlOv85U_-5AtBiXY6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748556126</pqid></control><display><type>article</type><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</creator><creatorcontrib>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</creatorcontrib><description>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15238409</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloying ; Alloys ; Antimony ; Compressive properties ; Energy gap ; Lasers ; Magnesium ; Molecular beam epitaxy ; Radiation ; Raman spectroscopy ; Sapphire ; Substrates ; Thin films ; X ray photoelectron spectroscopy ; X-rays ; Zinc oxide</subject><ispartof>Materials, 2022-11, Vol.15 (23), p.8409</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</citedby><cites>FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</cites><orcidid>0000-0001-8162-8016 ; 0000-0001-9355-9089 ; 0000-0003-0382-1819 ; 0000-0002-9768-0860 ; 0000-0003-1676-3638 ; 0000-0001-8724-6844 ; 0000-0002-6023-1412 ; 0000-0002-4984-1519 ; 0000-0003-3202-3154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748556126/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748556126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids></links><search><creatorcontrib>Przezdziecka, Ewa</creatorcontrib><creatorcontrib>Paradowska, Karolina M</creatorcontrib><creatorcontrib>Jakiela, Rafal</creatorcontrib><creatorcontrib>Kryvyi, Serhii</creatorcontrib><creatorcontrib>Zielony, Eunika</creatorcontrib><creatorcontrib>Placzek-Popko, Ewa</creatorcontrib><creatorcontrib>Lisowski, Wojciech</creatorcontrib><creatorcontrib>Sybilski, Piotr</creatorcontrib><creatorcontrib>Jarosz, Dawid</creatorcontrib><creatorcontrib>Adhikari, Abinash</creatorcontrib><creatorcontrib>Stachowicz, Marcin</creatorcontrib><creatorcontrib>Kozanecki, Adrian</creatorcontrib><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><title>Materials</title><description>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Antimony</subject><subject>Compressive properties</subject><subject>Energy gap</subject><subject>Lasers</subject><subject>Magnesium</subject><subject>Molecular beam epitaxy</subject><subject>Radiation</subject><subject>Raman spectroscopy</subject><subject>Sapphire</subject><subject>Substrates</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-rays</subject><subject>Zinc oxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkM1Kw0AUhQdRsNRufIKAGxFi5z8ZF4KWWoXWCurGzTBJJjUlnakzjbZv4NpH9Emc0uLf3dx7uYfDdw8AhwieEiJgd6YQwySlUOyAFhKCx0hQuvtr3gcd76cwFCEoxaIFune2Vi5SpohurYk325NBn-8fy9FkOT67z6KBs28mylbR6LJ_APZKVXvd2fY2eLzqP_Su4-F4cNO7GMY5SckiRhxqpRVhGJdCk1CQpEokgU4oTXShaMGx0BlDPGcKFjxlhaZFCRHWOuWkDc43vvMmm-ki12bhVC3nrpopt5JWVfLvxVTPcmJfpUgoopwGg-OtgbMvjfYLOat8rutaGW0bL3HCAlSCGQrSo3_SqW2cCe8FFU0Z4wiviU42qtxZ750uv2EQlOv85U_-5AtBiXY6</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Przezdziecka, Ewa</creator><creator>Paradowska, Karolina M</creator><creator>Jakiela, Rafal</creator><creator>Kryvyi, Serhii</creator><creator>Zielony, Eunika</creator><creator>Placzek-Popko, Ewa</creator><creator>Lisowski, Wojciech</creator><creator>Sybilski, Piotr</creator><creator>Jarosz, Dawid</creator><creator>Adhikari, Abinash</creator><creator>Stachowicz, Marcin</creator><creator>Kozanecki, Adrian</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8162-8016</orcidid><orcidid>https://orcid.org/0000-0001-9355-9089</orcidid><orcidid>https://orcid.org/0000-0003-0382-1819</orcidid><orcidid>https://orcid.org/0000-0002-9768-0860</orcidid><orcidid>https://orcid.org/0000-0003-1676-3638</orcidid><orcidid>https://orcid.org/0000-0001-8724-6844</orcidid><orcidid>https://orcid.org/0000-0002-6023-1412</orcidid><orcidid>https://orcid.org/0000-0002-4984-1519</orcidid><orcidid>https://orcid.org/0000-0003-3202-3154</orcidid></search><sort><creationdate>20221125</creationdate><title>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</title><author>Przezdziecka, Ewa ; Paradowska, Karolina M ; Jakiela, Rafal ; Kryvyi, Serhii ; Zielony, Eunika ; Placzek-Popko, Ewa ; Lisowski, Wojciech ; Sybilski, Piotr ; Jarosz, Dawid ; Adhikari, Abinash ; Stachowicz, Marcin ; Kozanecki, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Antimony</topic><topic>Compressive properties</topic><topic>Energy gap</topic><topic>Lasers</topic><topic>Magnesium</topic><topic>Molecular beam epitaxy</topic><topic>Radiation</topic><topic>Raman spectroscopy</topic><topic>Sapphire</topic><topic>Substrates</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-rays</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Przezdziecka, Ewa</creatorcontrib><creatorcontrib>Paradowska, Karolina M</creatorcontrib><creatorcontrib>Jakiela, Rafal</creatorcontrib><creatorcontrib>Kryvyi, Serhii</creatorcontrib><creatorcontrib>Zielony, Eunika</creatorcontrib><creatorcontrib>Placzek-Popko, Ewa</creatorcontrib><creatorcontrib>Lisowski, Wojciech</creatorcontrib><creatorcontrib>Sybilski, Piotr</creatorcontrib><creatorcontrib>Jarosz, Dawid</creatorcontrib><creatorcontrib>Adhikari, Abinash</creatorcontrib><creatorcontrib>Stachowicz, Marcin</creatorcontrib><creatorcontrib>Kozanecki, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Przezdziecka, Ewa</au><au>Paradowska, Karolina M</au><au>Jakiela, Rafal</au><au>Kryvyi, Serhii</au><au>Zielony, Eunika</au><au>Placzek-Popko, Ewa</au><au>Lisowski, Wojciech</au><au>Sybilski, Piotr</au><au>Jarosz, Dawid</au><au>Adhikari, Abinash</au><au>Stachowicz, Marcin</au><au>Kozanecki, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE</atitle><jtitle>Materials</jtitle><date>2022-11-25</date><risdate>2022</risdate><volume>15</volume><issue>23</issue><spage>8409</spage><pages>8409-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The article presents a systematic study of Sb-doped Zn1−xMgxO layers, with various concentrations of Mg, that were successfully grown by plasma-assisted MBE on polar a- and c-oriented and non-polar r-oriented sapphire substrates. X-ray diffraction confirmed the polar c-orientation of alloys grown on c-and a-oriented sapphire and non-polar structures grown on r-oriented substrates. A uniform depth distribution of the Sb dopant at level of 2 × 1020 cm−3 was determined by SIMS measurements. Raman spectroscopy revealed the presence of Sb-related modes in all samples. It also showed that Mg alloying reduces the compressive strain associated with Sb doping in ZnO. XPS analysis indicates that the chemical state of Sb atoms in ZnMgO is 3+, suggesting a substitutional position of SbZn, probably associated with two VZn vacancies. Luminescence and transmission spectra were measured to determine the band gaps of the Zn1−xMgxO layers. The band gap energies extracted from the transmittance measurements differ slightly for the a, c, and r substrate orientations, and the differences increase with increasing Mg content, despite identical growth conditions. The differences between the energy gaps, determined from transmission and PL peaks, are closely correlated with the Stokes shift and increase with the Mg content in the analyzed series of ZnMgO layers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15238409</doi><orcidid>https://orcid.org/0000-0001-8162-8016</orcidid><orcidid>https://orcid.org/0000-0001-9355-9089</orcidid><orcidid>https://orcid.org/0000-0003-0382-1819</orcidid><orcidid>https://orcid.org/0000-0002-9768-0860</orcidid><orcidid>https://orcid.org/0000-0003-1676-3638</orcidid><orcidid>https://orcid.org/0000-0001-8724-6844</orcidid><orcidid>https://orcid.org/0000-0002-6023-1412</orcidid><orcidid>https://orcid.org/0000-0002-4984-1519</orcidid><orcidid>https://orcid.org/0000-0003-3202-3154</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-11, Vol.15 (23), p.8409 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9741464 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloying Alloys Antimony Compressive properties Energy gap Lasers Magnesium Molecular beam epitaxy Radiation Raman spectroscopy Sapphire Substrates Thin films X ray photoelectron spectroscopy X-rays Zinc oxide |
title | Polar and Non-Polar Zn1−xMgxO:Sb Grown by MBE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20and%20Non-Polar%20Zn1%E2%88%92xMgxO:Sb%20Grown%20by%20MBE&rft.jtitle=Materials&rft.au=Przezdziecka,%20Ewa&rft.date=2022-11-25&rft.volume=15&rft.issue=23&rft.spage=8409&rft.pages=8409-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15238409&rft_dat=%3Cproquest_pubme%3E2748556126%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-160eaea3522f9e3333038a973849ae3eda4d629eb516c5a0d685de4df012ee863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748556126&rft_id=info:pmid/&rfr_iscdi=true |