Loading…
The Potential of Phylogenetically Diverse Culturable Actinobacteria from Litopenaeus vannamei Pond Sediment as Extracellular Proteolytic and Lipolytic Enzyme Producers
Enzymes are catalysts that can increase the reaction time of a biochemical process. Hydrolytic enzymes have a pivotal role in degrading organic waste in both terrestrial and aquatic environments. The aims of this study were (1) to investigate the ability of actinobacteria isolated from pond sediment...
Saved in:
Published in: | Tropical life sciences research 2022-09, Vol.33 (3), p.165-192 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enzymes are catalysts that can increase the reaction time of a biochemical process. Hydrolytic enzymes have a pivotal role in degrading organic waste in both terrestrial and aquatic environments. The aims of this study were (1) to investigate the ability of actinobacteria isolated from
pond sediment to produce proteolytic and lipolytic enzymes, (2) to identify promising candidates using 16S rRNA gene amplification, and (3) to construct a phylogenetic tree based on the 16S rRNA genes. A skim milk agar medium was used in the preliminary experiment of the proteolytic assay, and a Tween 20/80 medium was used in the lipolytic assay. Fifteen and 20 (out of 40) actinobacterial isolates showed great potential for proteolytic and lipolytic activities, respectively. Furthermore, four actinobacteria isolates produced both enzyme types with proteolytic and lipolytic index scores of 1-6.5. The most promising candidates were SA 2.2 (IM8), SC 2.1 (IM6), SD 1.5 (IM6) and SE 1.1 (IM8). BLAST homology results showed a high similarity between the actinobacteria isolates and
and
, respectively. Therefore, actinobacteria from
pond sediment are high-potential proteolytic and lipolytic enzyme producers. |
---|---|
ISSN: | 1985-3718 2180-4249 |
DOI: | 10.21315/tlsr2022.33.3.10 |