Loading…

Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts

The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, eq...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2022-12, Vol.7 (49), p.44869-44877
Main Authors: Hirakawa, Taiki, Miyahara, Yuma, Shimokawa, Yushi, Nishiyama, Koshi, Tsushida, Masayuki, Yoshida, Hiroshi, Ohyama, Junya, Machida, Masato
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a452t-27bdfa35869a3a5a9ce61ce3207809782c30a258d0d7ccabfbf570361be0f7ca3
container_end_page 44877
container_issue 49
container_start_page 44869
container_title ACS omega
container_volume 7
creator Hirakawa, Taiki
Miyahara, Yuma
Shimokawa, Yushi
Nishiyama, Koshi
Tsushida, Masayuki
Yoshida, Hiroshi
Ohyama, Junya
Machida, Masato
description The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, equimolar amounts (0.1 mol each), which were prepared on the Al2O3 support (1 mol Al) using H2 reduction treatment at 900 °C. Among 15 combinations, the best catalytic performance was achieved by the CrFeNiCu system. Light-off of NO–CO–C3H6–O2–H2O mixtures proceeded at the lowest temperature of ≤200 °C for CO, ≤300 °C for C3H6, and ≤400 °C for NO when the molar fraction of Cr in Cr x Fe0.1Ni0.1Cu0.1 was around x = 0.1. The activity for CO/C3H6 oxidation was superior to that of reference Pt/Al2O3 catalysts but was less active for NO reduction. The structural analysis using scanning transmission electron microscopy and X-ray absorption spectroscopy showed that the as-prepared catalyst consisted of FeNiCu alloy nanoparticles dispersed on the Cr2O3–Al2O3 support. However, the structural change occurred under a catalytic reaction atmosphere, i.e., producing NiCu alloy nanoparticles dispersed on a NiFe2O4 moiety and Cr2O3–Al2O3 support. The oxidation of CO/C3H6 can be significantly enhanced in the presence of Cr oxide, resulting in a faster decrease in O2 concentration and thus regenerating the NiCu metallic surface, which is active for NO reduction to N2.
doi_str_mv 10.1021/acsomega.2c05043
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9753504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755805314</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-27bdfa35869a3a5a9ce61ce3207809782c30a258d0d7ccabfbf570361be0f7ca3</originalsourceid><addsrcrecordid>eNp1kctOHDEQRa0oUUAD-6wiL7NIEz_G7Z5NJNSCEAkIUYiytKo91WDU3Z74gTS7_AN_mC-JRzMgsmBTtlT33nL5EPKOsyPOBP8ENvoRb-BIWKbYXL4i-2KuWcXlXL5-dt8jhzHeMcZ43YhG1G_JnqyVZKJW-2TVhr9_Hk6xlEtXSpvp9wwJwwRhTS9h8jGFbFMOSCFSoD9yF5NLOSHtfaBXAa3zOdILTDBE6iZ6nJMffXL3SK9vA2L1C9a0hdJexxQPyJu-CPFwd87Iz9OT6_asOv_25Wt7fF7BXIlUCd0te5CqqRcgQcHCYs0tSsF0wxa6EVYyEKpZsqW2Frq-65VmsuYdsl5bkDPyeZu7yt2IS4tTCjCYVXBj2cx4cOb_zuRuzY2_Nwut5OY7Z-TDLiD43xljMqOLFocBJiwLG6GVapiSfCNlW6kNPsaA_dMYzsyGlXlkZXasiuX98-c9GR7JFMHHraBYzZ3PBcgQX877B9Evpd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755805314</pqid></control><display><type>article</type><title>Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts</title><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Hirakawa, Taiki ; Miyahara, Yuma ; Shimokawa, Yushi ; Nishiyama, Koshi ; Tsushida, Masayuki ; Yoshida, Hiroshi ; Ohyama, Junya ; Machida, Masato</creator><creatorcontrib>Hirakawa, Taiki ; Miyahara, Yuma ; Shimokawa, Yushi ; Nishiyama, Koshi ; Tsushida, Masayuki ; Yoshida, Hiroshi ; Ohyama, Junya ; Machida, Masato</creatorcontrib><description>The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, equimolar amounts (0.1 mol each), which were prepared on the Al2O3 support (1 mol Al) using H2 reduction treatment at 900 °C. Among 15 combinations, the best catalytic performance was achieved by the CrFeNiCu system. Light-off of NO–CO–C3H6–O2–H2O mixtures proceeded at the lowest temperature of ≤200 °C for CO, ≤300 °C for C3H6, and ≤400 °C for NO when the molar fraction of Cr in Cr x Fe0.1Ni0.1Cu0.1 was around x = 0.1. The activity for CO/C3H6 oxidation was superior to that of reference Pt/Al2O3 catalysts but was less active for NO reduction. The structural analysis using scanning transmission electron microscopy and X-ray absorption spectroscopy showed that the as-prepared catalyst consisted of FeNiCu alloy nanoparticles dispersed on the Cr2O3–Al2O3 support. However, the structural change occurred under a catalytic reaction atmosphere, i.e., producing NiCu alloy nanoparticles dispersed on a NiFe2O4 moiety and Cr2O3–Al2O3 support. The oxidation of CO/C3H6 can be significantly enhanced in the presence of Cr oxide, resulting in a faster decrease in O2 concentration and thus regenerating the NiCu metallic surface, which is active for NO reduction to N2.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.2c05043</identifier><identifier>PMID: 36530265</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS omega, 2022-12, Vol.7 (49), p.44869-44877</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a452t-27bdfa35869a3a5a9ce61ce3207809782c30a258d0d7ccabfbf570361be0f7ca3</cites><orcidid>0000-0002-7438-5236 ; 0000-0001-9570-477X ; 0000-0002-6207-7914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.2c05043$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.2c05043$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27078,27922,27923,53789,53791,56760,56810</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36530265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirakawa, Taiki</creatorcontrib><creatorcontrib>Miyahara, Yuma</creatorcontrib><creatorcontrib>Shimokawa, Yushi</creatorcontrib><creatorcontrib>Nishiyama, Koshi</creatorcontrib><creatorcontrib>Tsushida, Masayuki</creatorcontrib><creatorcontrib>Yoshida, Hiroshi</creatorcontrib><creatorcontrib>Ohyama, Junya</creatorcontrib><creatorcontrib>Machida, Masato</creatorcontrib><title>Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, equimolar amounts (0.1 mol each), which were prepared on the Al2O3 support (1 mol Al) using H2 reduction treatment at 900 °C. Among 15 combinations, the best catalytic performance was achieved by the CrFeNiCu system. Light-off of NO–CO–C3H6–O2–H2O mixtures proceeded at the lowest temperature of ≤200 °C for CO, ≤300 °C for C3H6, and ≤400 °C for NO when the molar fraction of Cr in Cr x Fe0.1Ni0.1Cu0.1 was around x = 0.1. The activity for CO/C3H6 oxidation was superior to that of reference Pt/Al2O3 catalysts but was less active for NO reduction. The structural analysis using scanning transmission electron microscopy and X-ray absorption spectroscopy showed that the as-prepared catalyst consisted of FeNiCu alloy nanoparticles dispersed on the Cr2O3–Al2O3 support. However, the structural change occurred under a catalytic reaction atmosphere, i.e., producing NiCu alloy nanoparticles dispersed on a NiFe2O4 moiety and Cr2O3–Al2O3 support. The oxidation of CO/C3H6 can be significantly enhanced in the presence of Cr oxide, resulting in a faster decrease in O2 concentration and thus regenerating the NiCu metallic surface, which is active for NO reduction to N2.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1kctOHDEQRa0oUUAD-6wiL7NIEz_G7Z5NJNSCEAkIUYiytKo91WDU3Z74gTS7_AN_mC-JRzMgsmBTtlT33nL5EPKOsyPOBP8ENvoRb-BIWKbYXL4i-2KuWcXlXL5-dt8jhzHeMcZ43YhG1G_JnqyVZKJW-2TVhr9_Hk6xlEtXSpvp9wwJwwRhTS9h8jGFbFMOSCFSoD9yF5NLOSHtfaBXAa3zOdILTDBE6iZ6nJMffXL3SK9vA2L1C9a0hdJexxQPyJu-CPFwd87Iz9OT6_asOv_25Wt7fF7BXIlUCd0te5CqqRcgQcHCYs0tSsF0wxa6EVYyEKpZsqW2Frq-65VmsuYdsl5bkDPyeZu7yt2IS4tTCjCYVXBj2cx4cOb_zuRuzY2_Nwut5OY7Z-TDLiD43xljMqOLFocBJiwLG6GVapiSfCNlW6kNPsaA_dMYzsyGlXlkZXasiuX98-c9GR7JFMHHraBYzZ3PBcgQX877B9Evpd0</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Hirakawa, Taiki</creator><creator>Miyahara, Yuma</creator><creator>Shimokawa, Yushi</creator><creator>Nishiyama, Koshi</creator><creator>Tsushida, Masayuki</creator><creator>Yoshida, Hiroshi</creator><creator>Ohyama, Junya</creator><creator>Machida, Masato</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7438-5236</orcidid><orcidid>https://orcid.org/0000-0001-9570-477X</orcidid><orcidid>https://orcid.org/0000-0002-6207-7914</orcidid></search><sort><creationdate>20221213</creationdate><title>Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts</title><author>Hirakawa, Taiki ; Miyahara, Yuma ; Shimokawa, Yushi ; Nishiyama, Koshi ; Tsushida, Masayuki ; Yoshida, Hiroshi ; Ohyama, Junya ; Machida, Masato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-27bdfa35869a3a5a9ce61ce3207809782c30a258d0d7ccabfbf570361be0f7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirakawa, Taiki</creatorcontrib><creatorcontrib>Miyahara, Yuma</creatorcontrib><creatorcontrib>Shimokawa, Yushi</creatorcontrib><creatorcontrib>Nishiyama, Koshi</creatorcontrib><creatorcontrib>Tsushida, Masayuki</creatorcontrib><creatorcontrib>Yoshida, Hiroshi</creatorcontrib><creatorcontrib>Ohyama, Junya</creatorcontrib><creatorcontrib>Machida, Masato</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirakawa, Taiki</au><au>Miyahara, Yuma</au><au>Shimokawa, Yushi</au><au>Nishiyama, Koshi</au><au>Tsushida, Masayuki</au><au>Yoshida, Hiroshi</au><au>Ohyama, Junya</au><au>Machida, Masato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>7</volume><issue>49</issue><spage>44869</spage><epage>44877</epage><pages>44869-44877</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, equimolar amounts (0.1 mol each), which were prepared on the Al2O3 support (1 mol Al) using H2 reduction treatment at 900 °C. Among 15 combinations, the best catalytic performance was achieved by the CrFeNiCu system. Light-off of NO–CO–C3H6–O2–H2O mixtures proceeded at the lowest temperature of ≤200 °C for CO, ≤300 °C for C3H6, and ≤400 °C for NO when the molar fraction of Cr in Cr x Fe0.1Ni0.1Cu0.1 was around x = 0.1. The activity for CO/C3H6 oxidation was superior to that of reference Pt/Al2O3 catalysts but was less active for NO reduction. The structural analysis using scanning transmission electron microscopy and X-ray absorption spectroscopy showed that the as-prepared catalyst consisted of FeNiCu alloy nanoparticles dispersed on the Cr2O3–Al2O3 support. However, the structural change occurred under a catalytic reaction atmosphere, i.e., producing NiCu alloy nanoparticles dispersed on a NiFe2O4 moiety and Cr2O3–Al2O3 support. The oxidation of CO/C3H6 can be significantly enhanced in the presence of Cr oxide, resulting in a faster decrease in O2 concentration and thus regenerating the NiCu metallic surface, which is active for NO reduction to N2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36530265</pmid><doi>10.1021/acsomega.2c05043</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7438-5236</orcidid><orcidid>https://orcid.org/0000-0001-9570-477X</orcidid><orcidid>https://orcid.org/0000-0002-6207-7914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2022-12, Vol.7 (49), p.44869-44877
issn 2470-1343
2470-1343
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9753504
source American Chemical Society (ACS) Open Access; PubMed Central
title Cr–Fe–Ni–Cu Quaternary Nanostructure as a Substitute for Precious Metals in Automotive Three-Way Catalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cr%E2%80%93Fe%E2%80%93Ni%E2%80%93Cu%20Quaternary%20Nanostructure%20as%20a%20Substitute%20for%20Precious%20Metals%20in%20Automotive%20Three-Way%20Catalysts&rft.jtitle=ACS%20omega&rft.au=Hirakawa,%20Taiki&rft.date=2022-12-13&rft.volume=7&rft.issue=49&rft.spage=44869&rft.epage=44877&rft.pages=44869-44877&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.2c05043&rft_dat=%3Cproquest_pubme%3E2755805314%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a452t-27bdfa35869a3a5a9ce61ce3207809782c30a258d0d7ccabfbf570361be0f7ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755805314&rft_id=info:pmid/36530265&rfr_iscdi=true