Loading…
Microwave-Assisted Lignin Wet Peroxide Oxidation to C4 Dicarboxylic Acids
Innovative methodologies, such as microwave-assisted reaction, can help to valorize lignin with higher productivity and better energy efficiency. In this work, microwave heating was tested in the wet peroxide oxidation of three lignins (Indulin AT, Lignol, and Eucalyptus globulus lignins) as a novel...
Saved in:
Published in: | Industrial & engineering chemistry research 2022-03, Vol.61 (10), p.3570-3581 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Innovative methodologies, such as microwave-assisted reaction, can help to valorize lignin with higher productivity and better energy efficiency. In this work, microwave heating was tested in the wet peroxide oxidation of three lignins (Indulin AT, Lignol, and Eucalyptus globulus lignins) as a novel methodology to obtain C4 dicarboxylic acids. The effect of temperature, time, and catalyst type (TS-1 or Fe-TS1) was evaluated in the production of these acids. The TS-1 catalyst improved succinic acid yield, achieving up to 9.4 wt % for Lignol lignin. Moreover, the microwave heating specifically enhanced Lignol conversion to malic acid (34 wt %), even without catalyst, showing to be an attractive path for the future valorization of organosolv lignins. Overall, compared to conventional heating, microwave heating originated a rapid lignin conversion. Nevertheless, for prolonged times, conventional heating led to better results for some target products, e.g., malic and succinic acids. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.1c05004 |