Loading…
Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeost...
Saved in:
Published in: | International journal of molecular sciences 2022-12, Vol.23 (24), p.15707 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3 |
container_end_page | |
container_issue | 24 |
container_start_page | 15707 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Wang, Xueqiao Wei, Zhuying Gu, Mingjuan Zhu, Lin Hai, Chao Di, Anqi Wu, Di Bai, Chunling Su, Guanghua Liu, Xuefei Yang, Lei Li, Guangpeng |
description | Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (
) mouse has a hypermuscular phenotype. The muscle metabolism of the
mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the
mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the
mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription. |
doi_str_mv | 10.3390/ijms232415707 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9779574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758101134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</originalsourceid><addsrcrecordid>eNpdkc1rFDEchoMotlaPXiXgpYeO5nMyuQjD4hfs0gXXc8gmGTdrdrImmeLgP2-W1tJ6yQe_h4e8eQF4jdE7SiV67_eHTChhmAsknoBzzAhpEGrF0wfnM_Ai5z1CFeTyOTijLeecMnEO_ixjzjAOcDXHXHTxI-xDcSnDlS_R7OJok9cBXv_2tk5vHFzvYj7uYppDvcfxCm4WPVzMJjjYm0r4Ml9BPVrYb9ZwnaKdzImD1fztpwuuVNtqypV_CZ4NOmT36m6_AN8_fdwsvjTL689fF_2yMTVVaQimRGgzdA5zPDhKZMtbI6RlQ8c7zTrWWW6ZZM6KYbs1mtUFaUQdEa3UW3oBPtx6j9P24KxxY0k6qGPyB51mFbVXjyej36kf8UZJISQXrAou7wQp_ppcLurgs3Eh6NHFKSsieIcRxvSEvv0P3ccpjTXeiWoFw0LiSjW3lEn1-5Mb7h-DkTrVqh7VWvk3DxPc0_96pH8BCSygEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756741791</pqid></control><display><type>article</type><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</creator><creatorcontrib>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</creatorcontrib><description>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (
) mouse has a hypermuscular phenotype. The muscle metabolism of the
mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the
mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the
mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232415707</identifier><identifier>PMID: 36555347</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Body temperature ; Calorimetry ; CRISPR ; Dehydrogenases ; Electron transport ; Energy ; Energy balance ; Energy metabolism ; Enzyme-linked immunosorbent assay ; Enzymes ; Gene expression ; Glucose metabolism ; Homeostasis ; Hypertrophy ; Investigations ; Kinases ; Lipolysis ; Metabolic rate ; Metabolism ; Metabolites ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; Myostatin ; Myostatin - genetics ; Myostatin - metabolism ; Oxidative metabolism ; Oxidative Phosphorylation ; Phenotypes ; Phosphorylation ; Proteins ; Respiration ; Skeletal muscle ; Smad2 protein ; Tricarboxylic acid cycle</subject><ispartof>International journal of molecular sciences, 2022-12, Vol.23 (24), p.15707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</citedby><cites>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</cites><orcidid>0000-0001-7857-6390 ; 0000-0002-8244-9519 ; 0000-0002-8778-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756741791/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756741791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36555347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xueqiao</creatorcontrib><creatorcontrib>Wei, Zhuying</creatorcontrib><creatorcontrib>Gu, Mingjuan</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Hai, Chao</creatorcontrib><creatorcontrib>Di, Anqi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Bai, Chunling</creatorcontrib><creatorcontrib>Su, Guanghua</creatorcontrib><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Li, Guangpeng</creatorcontrib><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (
) mouse has a hypermuscular phenotype. The muscle metabolism of the
mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the
mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the
mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Body temperature</subject><subject>Calorimetry</subject><subject>CRISPR</subject><subject>Dehydrogenases</subject><subject>Electron transport</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy metabolism</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Glucose metabolism</subject><subject>Homeostasis</subject><subject>Hypertrophy</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Lipolysis</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myostatin</subject><subject>Myostatin - genetics</subject><subject>Myostatin - metabolism</subject><subject>Oxidative metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Skeletal muscle</subject><subject>Smad2 protein</subject><subject>Tricarboxylic acid cycle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1rFDEchoMotlaPXiXgpYeO5nMyuQjD4hfs0gXXc8gmGTdrdrImmeLgP2-W1tJ6yQe_h4e8eQF4jdE7SiV67_eHTChhmAsknoBzzAhpEGrF0wfnM_Ai5z1CFeTyOTijLeecMnEO_ixjzjAOcDXHXHTxI-xDcSnDlS_R7OJok9cBXv_2tk5vHFzvYj7uYppDvcfxCm4WPVzMJjjYm0r4Ml9BPVrYb9ZwnaKdzImD1fztpwuuVNtqypV_CZ4NOmT36m6_AN8_fdwsvjTL689fF_2yMTVVaQimRGgzdA5zPDhKZMtbI6RlQ8c7zTrWWW6ZZM6KYbs1mtUFaUQdEa3UW3oBPtx6j9P24KxxY0k6qGPyB51mFbVXjyej36kf8UZJISQXrAou7wQp_ppcLurgs3Eh6NHFKSsieIcRxvSEvv0P3ccpjTXeiWoFw0LiSjW3lEn1-5Mb7h-DkTrVqh7VWvk3DxPc0_96pH8BCSygEg</recordid><startdate>20221211</startdate><enddate>20221211</enddate><creator>Wang, Xueqiao</creator><creator>Wei, Zhuying</creator><creator>Gu, Mingjuan</creator><creator>Zhu, Lin</creator><creator>Hai, Chao</creator><creator>Di, Anqi</creator><creator>Wu, Di</creator><creator>Bai, Chunling</creator><creator>Su, Guanghua</creator><creator>Liu, Xuefei</creator><creator>Yang, Lei</creator><creator>Li, Guangpeng</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7857-6390</orcidid><orcidid>https://orcid.org/0000-0002-8244-9519</orcidid><orcidid>https://orcid.org/0000-0002-8778-6389</orcidid></search><sort><creationdate>20221211</creationdate><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><author>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Body temperature</topic><topic>Calorimetry</topic><topic>CRISPR</topic><topic>Dehydrogenases</topic><topic>Electron transport</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy metabolism</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Glucose metabolism</topic><topic>Homeostasis</topic><topic>Hypertrophy</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Lipolysis</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myostatin</topic><topic>Myostatin - genetics</topic><topic>Myostatin - metabolism</topic><topic>Oxidative metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Skeletal muscle</topic><topic>Smad2 protein</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueqiao</creatorcontrib><creatorcontrib>Wei, Zhuying</creatorcontrib><creatorcontrib>Gu, Mingjuan</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Hai, Chao</creatorcontrib><creatorcontrib>Di, Anqi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Bai, Chunling</creatorcontrib><creatorcontrib>Su, Guanghua</creatorcontrib><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Li, Guangpeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueqiao</au><au>Wei, Zhuying</au><au>Gu, Mingjuan</au><au>Zhu, Lin</au><au>Hai, Chao</au><au>Di, Anqi</au><au>Wu, Di</au><au>Bai, Chunling</au><au>Su, Guanghua</au><au>Liu, Xuefei</au><au>Yang, Lei</au><au>Li, Guangpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-12-11</date><risdate>2022</risdate><volume>23</volume><issue>24</issue><spage>15707</spage><pages>15707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (
) mouse has a hypermuscular phenotype. The muscle metabolism of the
mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the
mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the
mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36555347</pmid><doi>10.3390/ijms232415707</doi><orcidid>https://orcid.org/0000-0001-7857-6390</orcidid><orcidid>https://orcid.org/0000-0002-8244-9519</orcidid><orcidid>https://orcid.org/0000-0002-8778-6389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-12, Vol.23 (24), p.15707 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9779574 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adenosine Triphosphate - metabolism Animals Body temperature Calorimetry CRISPR Dehydrogenases Electron transport Energy Energy balance Energy metabolism Enzyme-linked immunosorbent assay Enzymes Gene expression Glucose metabolism Homeostasis Hypertrophy Investigations Kinases Lipolysis Metabolic rate Metabolism Metabolites Mice Mice, Knockout Mitochondria Mitochondria - metabolism Muscle, Skeletal - metabolism Muscles Musculoskeletal system Mutation Myostatin Myostatin - genetics Myostatin - metabolism Oxidative metabolism Oxidative Phosphorylation Phenotypes Phosphorylation Proteins Respiration Skeletal muscle Smad2 protein Tricarboxylic acid cycle |
title | Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Myostatin%20Alters%20Mitochondrial%20Oxidative%20Phosphorylation,%20TCA%20Cycle%20Activity,%20and%20ATP%20Production%20in%20Skeletal%20Muscle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Wang,%20Xueqiao&rft.date=2022-12-11&rft.volume=23&rft.issue=24&rft.spage=15707&rft.pages=15707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232415707&rft_dat=%3Cproquest_pubme%3E2758101134%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756741791&rft_id=info:pmid/36555347&rfr_iscdi=true |