Loading…

Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle

Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeost...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-12, Vol.23 (24), p.15707
Main Authors: Wang, Xueqiao, Wei, Zhuying, Gu, Mingjuan, Zhu, Lin, Hai, Chao, Di, Anqi, Wu, Di, Bai, Chunling, Su, Guanghua, Liu, Xuefei, Yang, Lei, Li, Guangpeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3
cites cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3
container_end_page
container_issue 24
container_start_page 15707
container_title International journal of molecular sciences
container_volume 23
creator Wang, Xueqiao
Wei, Zhuying
Gu, Mingjuan
Zhu, Lin
Hai, Chao
Di, Anqi
Wu, Di
Bai, Chunling
Su, Guanghua
Liu, Xuefei
Yang, Lei
Li, Guangpeng
description Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null ( ) mouse has a hypermuscular phenotype. The muscle metabolism of the mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
doi_str_mv 10.3390/ijms232415707
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9779574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758101134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</originalsourceid><addsrcrecordid>eNpdkc1rFDEchoMotlaPXiXgpYeO5nMyuQjD4hfs0gXXc8gmGTdrdrImmeLgP2-W1tJ6yQe_h4e8eQF4jdE7SiV67_eHTChhmAsknoBzzAhpEGrF0wfnM_Ai5z1CFeTyOTijLeecMnEO_ixjzjAOcDXHXHTxI-xDcSnDlS_R7OJok9cBXv_2tk5vHFzvYj7uYppDvcfxCm4WPVzMJjjYm0r4Ml9BPVrYb9ZwnaKdzImD1fztpwuuVNtqypV_CZ4NOmT36m6_AN8_fdwsvjTL689fF_2yMTVVaQimRGgzdA5zPDhKZMtbI6RlQ8c7zTrWWW6ZZM6KYbs1mtUFaUQdEa3UW3oBPtx6j9P24KxxY0k6qGPyB51mFbVXjyej36kf8UZJISQXrAou7wQp_ppcLurgs3Eh6NHFKSsieIcRxvSEvv0P3ccpjTXeiWoFw0LiSjW3lEn1-5Mb7h-DkTrVqh7VWvk3DxPc0_96pH8BCSygEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756741791</pqid></control><display><type>article</type><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</creator><creatorcontrib>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</creatorcontrib><description>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null ( ) mouse has a hypermuscular phenotype. The muscle metabolism of the mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232415707</identifier><identifier>PMID: 36555347</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Body temperature ; Calorimetry ; CRISPR ; Dehydrogenases ; Electron transport ; Energy ; Energy balance ; Energy metabolism ; Enzyme-linked immunosorbent assay ; Enzymes ; Gene expression ; Glucose metabolism ; Homeostasis ; Hypertrophy ; Investigations ; Kinases ; Lipolysis ; Metabolic rate ; Metabolism ; Metabolites ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; Myostatin ; Myostatin - genetics ; Myostatin - metabolism ; Oxidative metabolism ; Oxidative Phosphorylation ; Phenotypes ; Phosphorylation ; Proteins ; Respiration ; Skeletal muscle ; Smad2 protein ; Tricarboxylic acid cycle</subject><ispartof>International journal of molecular sciences, 2022-12, Vol.23 (24), p.15707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</citedby><cites>FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</cites><orcidid>0000-0001-7857-6390 ; 0000-0002-8244-9519 ; 0000-0002-8778-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756741791/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756741791?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36555347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xueqiao</creatorcontrib><creatorcontrib>Wei, Zhuying</creatorcontrib><creatorcontrib>Gu, Mingjuan</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Hai, Chao</creatorcontrib><creatorcontrib>Di, Anqi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Bai, Chunling</creatorcontrib><creatorcontrib>Su, Guanghua</creatorcontrib><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Li, Guangpeng</creatorcontrib><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null ( ) mouse has a hypermuscular phenotype. The muscle metabolism of the mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Body temperature</subject><subject>Calorimetry</subject><subject>CRISPR</subject><subject>Dehydrogenases</subject><subject>Electron transport</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy metabolism</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Glucose metabolism</subject><subject>Homeostasis</subject><subject>Hypertrophy</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Lipolysis</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myostatin</subject><subject>Myostatin - genetics</subject><subject>Myostatin - metabolism</subject><subject>Oxidative metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Skeletal muscle</subject><subject>Smad2 protein</subject><subject>Tricarboxylic acid cycle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkc1rFDEchoMotlaPXiXgpYeO5nMyuQjD4hfs0gXXc8gmGTdrdrImmeLgP2-W1tJ6yQe_h4e8eQF4jdE7SiV67_eHTChhmAsknoBzzAhpEGrF0wfnM_Ai5z1CFeTyOTijLeecMnEO_ixjzjAOcDXHXHTxI-xDcSnDlS_R7OJok9cBXv_2tk5vHFzvYj7uYppDvcfxCm4WPVzMJjjYm0r4Ml9BPVrYb9ZwnaKdzImD1fztpwuuVNtqypV_CZ4NOmT36m6_AN8_fdwsvjTL689fF_2yMTVVaQimRGgzdA5zPDhKZMtbI6RlQ8c7zTrWWW6ZZM6KYbs1mtUFaUQdEa3UW3oBPtx6j9P24KxxY0k6qGPyB51mFbVXjyej36kf8UZJISQXrAou7wQp_ppcLurgs3Eh6NHFKSsieIcRxvSEvv0P3ccpjTXeiWoFw0LiSjW3lEn1-5Mb7h-DkTrVqh7VWvk3DxPc0_96pH8BCSygEg</recordid><startdate>20221211</startdate><enddate>20221211</enddate><creator>Wang, Xueqiao</creator><creator>Wei, Zhuying</creator><creator>Gu, Mingjuan</creator><creator>Zhu, Lin</creator><creator>Hai, Chao</creator><creator>Di, Anqi</creator><creator>Wu, Di</creator><creator>Bai, Chunling</creator><creator>Su, Guanghua</creator><creator>Liu, Xuefei</creator><creator>Yang, Lei</creator><creator>Li, Guangpeng</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7857-6390</orcidid><orcidid>https://orcid.org/0000-0002-8244-9519</orcidid><orcidid>https://orcid.org/0000-0002-8778-6389</orcidid></search><sort><creationdate>20221211</creationdate><title>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</title><author>Wang, Xueqiao ; Wei, Zhuying ; Gu, Mingjuan ; Zhu, Lin ; Hai, Chao ; Di, Anqi ; Wu, Di ; Bai, Chunling ; Su, Guanghua ; Liu, Xuefei ; Yang, Lei ; Li, Guangpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Body temperature</topic><topic>Calorimetry</topic><topic>CRISPR</topic><topic>Dehydrogenases</topic><topic>Electron transport</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy metabolism</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Glucose metabolism</topic><topic>Homeostasis</topic><topic>Hypertrophy</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Lipolysis</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myostatin</topic><topic>Myostatin - genetics</topic><topic>Myostatin - metabolism</topic><topic>Oxidative metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Skeletal muscle</topic><topic>Smad2 protein</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueqiao</creatorcontrib><creatorcontrib>Wei, Zhuying</creatorcontrib><creatorcontrib>Gu, Mingjuan</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Hai, Chao</creatorcontrib><creatorcontrib>Di, Anqi</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Bai, Chunling</creatorcontrib><creatorcontrib>Su, Guanghua</creatorcontrib><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Li, Guangpeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueqiao</au><au>Wei, Zhuying</au><au>Gu, Mingjuan</au><au>Zhu, Lin</au><au>Hai, Chao</au><au>Di, Anqi</au><au>Wu, Di</au><au>Bai, Chunling</au><au>Su, Guanghua</au><au>Liu, Xuefei</au><au>Yang, Lei</au><au>Li, Guangpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-12-11</date><risdate>2022</risdate><volume>23</volume><issue>24</issue><spage>15707</spage><pages>15707-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null ( ) mouse has a hypermuscular phenotype. The muscle metabolism of the mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36555347</pmid><doi>10.3390/ijms232415707</doi><orcidid>https://orcid.org/0000-0001-7857-6390</orcidid><orcidid>https://orcid.org/0000-0002-8244-9519</orcidid><orcidid>https://orcid.org/0000-0002-8778-6389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-12, Vol.23 (24), p.15707
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9779574
source Publicly Available Content Database; PubMed Central
subjects Adenosine Triphosphate - metabolism
Animals
Body temperature
Calorimetry
CRISPR
Dehydrogenases
Electron transport
Energy
Energy balance
Energy metabolism
Enzyme-linked immunosorbent assay
Enzymes
Gene expression
Glucose metabolism
Homeostasis
Hypertrophy
Investigations
Kinases
Lipolysis
Metabolic rate
Metabolism
Metabolites
Mice
Mice, Knockout
Mitochondria
Mitochondria - metabolism
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Mutation
Myostatin
Myostatin - genetics
Myostatin - metabolism
Oxidative metabolism
Oxidative Phosphorylation
Phenotypes
Phosphorylation
Proteins
Respiration
Skeletal muscle
Smad2 protein
Tricarboxylic acid cycle
title Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Myostatin%20Alters%20Mitochondrial%20Oxidative%20Phosphorylation,%20TCA%20Cycle%20Activity,%20and%20ATP%20Production%20in%20Skeletal%20Muscle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Wang,%20Xueqiao&rft.date=2022-12-11&rft.volume=23&rft.issue=24&rft.spage=15707&rft.pages=15707-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232415707&rft_dat=%3Cproquest_pubme%3E2758101134%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-21327acf8e151fe329656c79d4f858a4848d5d494ed7fbbca4bbc0a03e2769ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756741791&rft_id=info:pmid/36555347&rfr_iscdi=true