Loading…

Non-Wetting and Non-Reactive Behavior of Liquid Pure Magnesium on Pure Tungsten Substrates

The wetting behavior of liquid magnesium drop on pure tungsten substrates was investigated, for the first time, with the sessile drop method combined with non-contact heating and capillary purification of a Mg drop from a native oxide film. A specially designed apparatus dedicated to the investigati...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-12, Vol.15 (24), p.9024
Main Authors: Terlicka, Sylwia, Darłak, Paweł, Sobczak, Natalia, Sobczak, Jerzy J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wetting behavior of liquid magnesium drop on pure tungsten substrates was investigated, for the first time, with the sessile drop method combined with non-contact heating and capillary purification of a Mg drop from a native oxide film. A specially designed apparatus dedicated to the investigation of the high-temperature interaction of dissimilar materials was used. The comparative experiments were performed under isothermal conditions at temperatures of 700 °C and 740 °C using two atmospheres: Ar + 5 wt.% H2 and pure Ar, respectively. During high-temperature tests for 180 s, the images of the Mg/W couples were recorded with CCD cameras (57 fps) from two directions of observation. The solidified drop/substrate couples were subjected to structural characterization using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Under the applied measurement conditions, liquid Mg revealed non-wetting behavior on W substrates (a contact angle θ > 90°). The average value of the contact angle under the flowing Ar atmosphere at 740 °C was θav = 115°, whereas it was higher under the flowing Ar + 5 wt.%. H2 atmosphere at a lower temperature of 700 °C, showing θav = 122°. Independently on employed atmosphere and temperature, SEM + EDS analysis of solidified sessile drop couples did not display any new phases and mass transfer between the Mg drop and the W substrate, whereas the presence of discontinuities at the Mg/W interface of cross-sectioned couples were well-distinguished. Non-wetting and a lack of permanent bonding between the Mg drop and W substrates have a good agreement with the Mg−W phase diagram calculated with the help of FactSage software and FTlite database, i.e., the non-reactive nature of the Mg/W couple because W does not dissolve in liquid Mg and it does not form any compounds with Mg. These findings allow for the recommendation of tungsten as a suitable refractory material for long-time contact with liquid Mg in different container-assisted methods of materials characterization as well as in liquid-assisted processing of Mg components.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15249024