Loading…

Triploid Atlantic salmon (Salmo salar) may have increased risk of primary field outbreaks of infectious salmon anaemia

The impact that escaped farmed fish may have on wild populations is of major concern for Atlantic salmon (Salmo salar) farming. Triploid fish, being infertile, were originally introduced to mitigate the genetic impact of escaped fish. In the recent years, an increase in the number of infectious salm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fish diseases 2022-11, Vol.45 (11), p.1733-1743
Main Authors: Aunsmo, Arnfinn, Martinsen, Lisbeth, Bruheim, Torkjel, Sekkelsten‐Kindt, Mats Martin, Sandtrø, Ane, Gaasø, Solveig, Braaen, Stine, Rimstad, Espen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact that escaped farmed fish may have on wild populations is of major concern for Atlantic salmon (Salmo salar) farming. Triploid fish, being infertile, were originally introduced to mitigate the genetic impact of escaped fish. In the recent years, an increase in the number of infectious salmon anaemia (ISA) outbreaks in Norway has been observed, mainly in the northern parts, which is also where farming of triploid fish has been licensed. The present study investigated the susceptibility of triploid Atlantic salmon to ISA both by field observations and experimental infections. Based on field observations, we found an increased susceptibility, with 9.4 increased odds to primary ISA outbreaks in triploid fish versus diploid fish at production‐site level, and a tendency of increased odds (3.4) of ISA in triploid fish at individual cage level at sited with primary outbreaks. At some sites, ISA outbreaks were only diagnosed in cages with triploid fish and not in cages with diploid fish. Primary ISA outbreaks are the source for further spread of the disease, and it is noteworthy that in an experimental trial we found significantly more viral RNA in non‐ISA‐vaccinated triploid than in non‐ISA‐vaccinated diploid fish at the peak of the infection. Interestingly, the notable differences of susceptibility to ISA for non‐ISA vaccinated diploid and triploid fish observed in field were not repeated experimentally. The possible increased risk of ISA should be considered when evaluating the costs and benefits of triploid salmon in farming. It is recommended to keep triploid and diploid fish in biosecure separated sites, or that triploid fish are not farmed at all.
ISSN:0140-7775
1365-2761
DOI:10.1111/jfd.13695