Loading…
GAVISUNK: genome assembly validation via inter-SUNK distances in Oxford Nanopore reads
Abstract Motivation Highly contiguous de novo phased diploid genome assemblies are now feasible for large numbers of species and individuals. Methods are needed to validate assembly accuracy and detect misassemblies with orthologous sequencing data to allow for confident downstream analyses. Results...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2023-01, Vol.39 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Motivation
Highly contiguous de novo phased diploid genome assemblies are now feasible for large numbers of species and individuals. Methods are needed to validate assembly accuracy and detect misassemblies with orthologous sequencing data to allow for confident downstream analyses.
Results
We developed GAVISUNK, an open-source pipeline that detects misassemblies and produces a set of reliable regions genome-wide by assessing concordance of distances between unique k-mers in Pacific Biosciences high-fidelity assemblies and raw Oxford Nanopore Technologies reads.
Availability and implementation
GAVISUNK is available at https://github.com/pdishuck/GAVISUNK.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4811 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btac714 |