Loading…

Nitrogen doping to atomically match reaction sites in microbial fuel cells

Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive...

Full description

Saved in:
Bibliographic Details
Published in:Communications chemistry 2020-06, Vol.3 (1), p.68-68, Article 68
Main Authors: Wu, Xiaoshuai, Qiao, Yan, Guo, Chunxian, Shi, Zhuanzhuan, Li, Chang Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3
cites cdi_FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3
container_end_page 68
container_issue 1
container_start_page 68
container_title Communications chemistry
container_volume 3
creator Wu, Xiaoshuai
Qiao, Yan
Guo, Chunxian
Shi, Zhuanzhuan
Li, Chang Ming
description Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive mediator) reaction sites resulting in strong adsorption and conversion of diffusive mediators to anchored redox centers. This impregnates highly concentrated fixed redox centers in the microbes-loaded biofilm electrode. This atomic matching enables short electron transfer pathways resulting in fast, direct electrochemistry as shown in Shewanella putrefaciens ( S. putrefaciens ) based microbial fuel cells (MFCs), showing a maximum power output higher than the conventional non-matched nitrogen-doped anode based MFCs by 21 times. This work sheds a light on diffusion mediation for fast direct electrochemistry, while holding promise for efficient and high power MFCs. In microbial fuel cells direct electron transfer offers high energy conversion efficiency, but low concentrations of redox centers on bacterial membranes result in low power density. Here nitrogen-doping is fine tuned to match Flavin reaction sites, converting diffusive mediators to anchored redox centers toward direct electrochemistry.
doi_str_mv 10.1038/s42004-020-0316-z
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9814380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490400454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxUOpVFE_QDcl0E03U2_-TDLZFESsVkQ3dh0y85JnZCZ5Jhnh-embx1OrBbtK4PzuyT05CH0m8J0A644ypwC8AQoNMCKaxw9ojzKlGiaE-vjqvosOc74DqCRhUnaf0C4TEhhn7R66uPIlxaUNeBFXPixxidiUOPnBjOMaT6YMtzhZMxQfA86-2Ix9wFVPsfdmxG62Ix7sOOYDtOPMmO3h07mPfv88vTk5by6vz36dHF82A1ddaYhzPekUNa0RPWupktYoIXuiRLuwdUFpBJVKUWIdZ1y2g-iddGBcD5TRBdtHP7a-q7mf7GKwoSQz6lXyk0lrHY3Xb5Xgb_UyPmjVEc46qAbfngxSvJ9tLnryeRPBBBvnrKmUQEhHJano13_QuzinUONpyhXw2kDL_09B1xJK-caLbKn6dTkn615WJqA3leptpboWpTeV6sc68-V11peJ5wIrQLdArlJY2vT36fdd_wD5JKt-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408512241</pqid></control><display><type>article</type><title>Nitrogen doping to atomically match reaction sites in microbial fuel cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Xiaoshuai ; Qiao, Yan ; Guo, Chunxian ; Shi, Zhuanzhuan ; Li, Chang Ming</creator><creatorcontrib>Wu, Xiaoshuai ; Qiao, Yan ; Guo, Chunxian ; Shi, Zhuanzhuan ; Li, Chang Ming</creatorcontrib><description>Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive mediator) reaction sites resulting in strong adsorption and conversion of diffusive mediators to anchored redox centers. This impregnates highly concentrated fixed redox centers in the microbes-loaded biofilm electrode. This atomic matching enables short electron transfer pathways resulting in fast, direct electrochemistry as shown in Shewanella putrefaciens ( S. putrefaciens ) based microbial fuel cells (MFCs), showing a maximum power output higher than the conventional non-matched nitrogen-doped anode based MFCs by 21 times. This work sheds a light on diffusion mediation for fast direct electrochemistry, while holding promise for efficient and high power MFCs. In microbial fuel cells direct electron transfer offers high energy conversion efficiency, but low concentrations of redox centers on bacterial membranes result in low power density. Here nitrogen-doping is fine tuned to match Flavin reaction sites, converting diffusive mediators to anchored redox centers toward direct electrochemistry.</description><identifier>ISSN: 2399-3669</identifier><identifier>EISSN: 2399-3669</identifier><identifier>DOI: 10.1038/s42004-020-0316-z</identifier><identifier>PMID: 36703435</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/603 ; 639/301/299/161 ; 639/638/161/893 ; Anodes ; Biochemical fuel cells ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Diffusion rate ; Doping ; Electrochemistry ; Electron transfer ; Electrons ; Energy conversion efficiency ; Fuel cells ; Heat treatment ; Low concentrations ; Matching ; Maximum power ; Mediators ; Membranes ; Microorganisms ; Nitrogen</subject><ispartof>Communications chemistry, 2020-06, Vol.3 (1), p.68-68, Article 68</ispartof><rights>The Author(s) 2020</rights><rights>2020. The Author(s).</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3</citedby><cites>FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3</cites><orcidid>0000-0003-3887-1699 ; 0000-0002-4041-2574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814380/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2490400454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36703435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaoshuai</creatorcontrib><creatorcontrib>Qiao, Yan</creatorcontrib><creatorcontrib>Guo, Chunxian</creatorcontrib><creatorcontrib>Shi, Zhuanzhuan</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><title>Nitrogen doping to atomically match reaction sites in microbial fuel cells</title><title>Communications chemistry</title><addtitle>Commun Chem</addtitle><addtitle>Commun Chem</addtitle><description>Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive mediator) reaction sites resulting in strong adsorption and conversion of diffusive mediators to anchored redox centers. This impregnates highly concentrated fixed redox centers in the microbes-loaded biofilm electrode. This atomic matching enables short electron transfer pathways resulting in fast, direct electrochemistry as shown in Shewanella putrefaciens ( S. putrefaciens ) based microbial fuel cells (MFCs), showing a maximum power output higher than the conventional non-matched nitrogen-doped anode based MFCs by 21 times. This work sheds a light on diffusion mediation for fast direct electrochemistry, while holding promise for efficient and high power MFCs. In microbial fuel cells direct electron transfer offers high energy conversion efficiency, but low concentrations of redox centers on bacterial membranes result in low power density. Here nitrogen-doping is fine tuned to match Flavin reaction sites, converting diffusive mediators to anchored redox centers toward direct electrochemistry.</description><subject>631/45/603</subject><subject>639/301/299/161</subject><subject>639/638/161/893</subject><subject>Anodes</subject><subject>Biochemical fuel cells</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Diffusion rate</subject><subject>Doping</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Heat treatment</subject><subject>Low concentrations</subject><subject>Matching</subject><subject>Maximum power</subject><subject>Mediators</subject><subject>Membranes</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><issn>2399-3669</issn><issn>2399-3669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kU9LHTEUxUOpVFE_QDcl0E03U2_-TDLZFESsVkQ3dh0y85JnZCZ5Jhnh-embx1OrBbtK4PzuyT05CH0m8J0A644ypwC8AQoNMCKaxw9ojzKlGiaE-vjqvosOc74DqCRhUnaf0C4TEhhn7R66uPIlxaUNeBFXPixxidiUOPnBjOMaT6YMtzhZMxQfA86-2Ix9wFVPsfdmxG62Ix7sOOYDtOPMmO3h07mPfv88vTk5by6vz36dHF82A1ddaYhzPekUNa0RPWupktYoIXuiRLuwdUFpBJVKUWIdZ1y2g-iddGBcD5TRBdtHP7a-q7mf7GKwoSQz6lXyk0lrHY3Xb5Xgb_UyPmjVEc46qAbfngxSvJ9tLnryeRPBBBvnrKmUQEhHJano13_QuzinUONpyhXw2kDL_09B1xJK-caLbKn6dTkn615WJqA3leptpboWpTeV6sc68-V11peJ5wIrQLdArlJY2vT36fdd_wD5JKt-</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wu, Xiaoshuai</creator><creator>Qiao, Yan</creator><creator>Guo, Chunxian</creator><creator>Shi, Zhuanzhuan</creator><creator>Li, Chang Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3887-1699</orcidid><orcidid>https://orcid.org/0000-0002-4041-2574</orcidid></search><sort><creationdate>20200601</creationdate><title>Nitrogen doping to atomically match reaction sites in microbial fuel cells</title><author>Wu, Xiaoshuai ; Qiao, Yan ; Guo, Chunxian ; Shi, Zhuanzhuan ; Li, Chang Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/603</topic><topic>639/301/299/161</topic><topic>639/638/161/893</topic><topic>Anodes</topic><topic>Biochemical fuel cells</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Diffusion rate</topic><topic>Doping</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Heat treatment</topic><topic>Low concentrations</topic><topic>Matching</topic><topic>Maximum power</topic><topic>Mediators</topic><topic>Membranes</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaoshuai</creatorcontrib><creatorcontrib>Qiao, Yan</creatorcontrib><creatorcontrib>Guo, Chunxian</creatorcontrib><creatorcontrib>Shi, Zhuanzhuan</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Communications chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaoshuai</au><au>Qiao, Yan</au><au>Guo, Chunxian</au><au>Shi, Zhuanzhuan</au><au>Li, Chang Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen doping to atomically match reaction sites in microbial fuel cells</atitle><jtitle>Communications chemistry</jtitle><stitle>Commun Chem</stitle><addtitle>Commun Chem</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>3</volume><issue>1</issue><spage>68</spage><epage>68</epage><pages>68-68</pages><artnum>68</artnum><issn>2399-3669</issn><eissn>2399-3669</eissn><abstract>Direct electron transfer at microbial anodes offers high energy conversion efficiency but relies on low concentrations of redox centers on bacterium membranes resulting in low power density. Here a heat-treatment is used to delicately tune nitrogen-doping for atomic matching with Flavin (a diffusive mediator) reaction sites resulting in strong adsorption and conversion of diffusive mediators to anchored redox centers. This impregnates highly concentrated fixed redox centers in the microbes-loaded biofilm electrode. This atomic matching enables short electron transfer pathways resulting in fast, direct electrochemistry as shown in Shewanella putrefaciens ( S. putrefaciens ) based microbial fuel cells (MFCs), showing a maximum power output higher than the conventional non-matched nitrogen-doped anode based MFCs by 21 times. This work sheds a light on diffusion mediation for fast direct electrochemistry, while holding promise for efficient and high power MFCs. In microbial fuel cells direct electron transfer offers high energy conversion efficiency, but low concentrations of redox centers on bacterial membranes result in low power density. Here nitrogen-doping is fine tuned to match Flavin reaction sites, converting diffusive mediators to anchored redox centers toward direct electrochemistry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36703435</pmid><doi>10.1038/s42004-020-0316-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3887-1699</orcidid><orcidid>https://orcid.org/0000-0002-4041-2574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3669
ispartof Communications chemistry, 2020-06, Vol.3 (1), p.68-68, Article 68
issn 2399-3669
2399-3669
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9814380
source Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/603
639/301/299/161
639/638/161/893
Anodes
Biochemical fuel cells
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Diffusion rate
Doping
Electrochemistry
Electron transfer
Electrons
Energy conversion efficiency
Fuel cells
Heat treatment
Low concentrations
Matching
Maximum power
Mediators
Membranes
Microorganisms
Nitrogen
title Nitrogen doping to atomically match reaction sites in microbial fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20doping%20to%20atomically%20match%20reaction%20sites%20in%20microbial%20fuel%20cells&rft.jtitle=Communications%20chemistry&rft.au=Wu,%20Xiaoshuai&rft.date=2020-06-01&rft.volume=3&rft.issue=1&rft.spage=68&rft.epage=68&rft.pages=68-68&rft.artnum=68&rft.issn=2399-3669&rft.eissn=2399-3669&rft_id=info:doi/10.1038/s42004-020-0316-z&rft_dat=%3Cproquest_pubme%3E2490400454%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-1ffb1892a5a6b35297ea967b1965de3777a6279921ef43475c6bf7f0afb0232d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408512241&rft_id=info:pmid/36703435&rfr_iscdi=true