Loading…

Microstructure-Based Computational Analysis of Deformation Stages of Rock-like Sandy-Cement Samples in Uniaxial Compression

This work presents a new finite-difference continuum damage mechanics approach for assessment of threshold stresses based on the mechanical response of a representative volume element of a sandy-cement rock-like material. An original experimental study allows validating the mathematical model. A new...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2022-12, Vol.16 (1), p.24
Main Authors: Eremin, Mikhail O, Zimina, Valentina A, Kulkov, Aleksey S, Stefanov, Yurii P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work presents a new finite-difference continuum damage mechanics approach for assessment of threshold stresses based on the mechanical response of a representative volume element of a sandy-cement rock-like material. An original experimental study allows validating the mathematical model. A new modification of the damage accumulation kinetic equation is proposed. Several approaches based on acoustic emission, instantaneous Poisson's ratio and reversal point method are employed to determine the threshold stresses. Relying on the numerical modeling of deformation and failure of model samples, the threshold stresses and the deformation stages are determined. The model predicts the crack initiation stress threshold with less than 10% error. The model prediction of the crack damage stress threshold corresponds to the upper boundary of the experimental range. The model predicts the peak stress threshold with less than 0.2% error in comparison with the average experimental peak stress. The results of numerical modeling are shown to correlate well with the available experimental and literature data and sufficiently complement them.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16010024